Matching Items (12)
Filtering by

Clear all filters

171751-Thumbnail Image.png
Description
Primary producers, from algae to trees, play a pivotal role in community structure and ecosystem function. Primary producers vary broadly in their functional traits (i.e., morphological, physiological, biochemical, and behavioral characteristics), which determine how they respond to stimuli and affect ecosystem properties. Functional traits provide a mechanistic link between

Primary producers, from algae to trees, play a pivotal role in community structure and ecosystem function. Primary producers vary broadly in their functional traits (i.e., morphological, physiological, biochemical, and behavioral characteristics), which determine how they respond to stimuli and affect ecosystem properties. Functional traits provide a mechanistic link between environmental conditions, community structure, and ecosystem function. With climate change altering environmental conditions, understanding this mechanistic link is essential for predicting future community structure and ecosystem function. Competitive interactions and trait values in primary producers are often context dependent, whereby changes in environmental conditions and resources alter relationships between species and ecosystem processes. Well-established paradigms concerning how species in a community respond to each other and to environmental conditions may need to be re-evaluated in light of these environmental changes, particularly in highly variable systems. In this dissertation, I examine the role of primary producer functional traits on community structure and ecosystem function. Specifically, I test a conceptual framework that incorporates response traits, effect traits, and their interaction, in affecting primary producer communities and ecosystem function across different aquatic systems. First, I identified species-specific responses to intensifying hydrologic stressors important in controlling wetland plant community composition over time in an aridland stream. Second, I found that effect traits of submerged and emergent vegetation explained differences in ecosystem metabolism and carbon dynamics among permafrost mire thaw ponds. Next, I examined response-effect trait interactions by comparing two dominant wetland plant species over a water-stress gradient, finding that responses to changes in hydrology (i.e., altered tissue chemistry) in turn affect ecosystem processes (i.e., subsurface CO2 concentration). Finally, I demonstrate how indirect effects of diatom functional traits on water chemistry and ecosystem metabolism help explain disconnects between resource availability and productivity in the Colorado River. By expanding my understanding of how metabolic processes and carbon cycling in aquatic ecosystems vary across gradients in hydrology, vegetation, and organic matter, I contributed to my understanding of how communities influence ecosystem processes. A response-effect trait approach to understanding communities and ecosystems undergoing change may aid in predicting and mitigating the repercussions of future climate change.
ContributorsLauck, Marina Diane (Author) / Grimm, Nancy B (Thesis advisor) / Appling, Alison P (Committee member) / Childers, Dan E (Committee member) / Sabo, John L (Committee member) / Arizona State University (Publisher)
Created2022
171736-Thumbnail Image.png
Description
Climate change is one of the most pressing issues facing humanity, and cities are likely to experience many of the most dangerous effects of climate change. One way that cities aim to adapt to become more resilient to climate change is through the provision of locally produced ecosystem services: the

Climate change is one of the most pressing issues facing humanity, and cities are likely to experience many of the most dangerous effects of climate change. One way that cities aim to adapt to become more resilient to climate change is through the provision of locally produced ecosystem services: the benefits that people get from nature. In cities, these ecosystem services are provided by diverse forms of urban ecological infrastructure (UEI): all parts of a city that include ecological structure and function. While there is a growing body of research touting the multifunctionality of UEI and an increasing number of cities implementing UEI plans, there remain important gaps in understanding how UEI features perform at providing ecosystem services and how the local social-ecological-technological context affects the efficacy of UEI solutions. Inspired by the need for cities to adapt to become more resilient to climate change, this dissertation takes an interdisciplinary approach to understand how diverse UEI features and their ecosystem services are perceived, provided, and prioritized for current and future climate resilience. The second chapter explores how a diverse group of local actors in Valdivia, Chile perceives the city’s urban wetlands and identifies common trade-offs in the perceived importance of different ecosystem services from the wetlands. The third chapter demonstrates species-level differences and trade-offs between common street trees in Phoenix, Arizona in their ability to provide the ecosystem services of both local climate regulation and stormwater regulation. The fourth chapter compares how participatory scenarios from nine cities across the United States and Latin America vary in the degree to which they incorporate UEI and ecosystem services into future visions. The fifth chapter returns focus to Phoenix and illustrates dominant perspectives on the prioritization of ecosystem services for achieving climate resilience and how those priorities change across temporal scales. The dissertation concludes with a synthesis of the previous chapters and suggestions for future urban ecosystem services research. Combined, this dissertation advances understanding of ecosystem services from UEI and highlights the importance of considering trade-offs among UEI features in order help achieve more just, verdant, and resilient urban futures.
ContributorsElser, Stephen Robert (Author) / Grimm, Nancy (Thesis advisor) / Berbés-Blázquez, Marta (Committee member) / Cook, Elizabeth (Committee member) / McPhillips, Lauren (Committee member) / York, Abigail (Committee member) / Arizona State University (Publisher)
Created2022
193575-Thumbnail Image.png
Description
Terrestrial ecosystems are critical to human welfare and regulating Earth’s life support systems but many gaps in our knowledge remain regarding how terrestrial plant communities respond to changes in climate or human actions. I used field experiments distributed across three dryland ecosystems in North America to evaluate the consequences of

Terrestrial ecosystems are critical to human welfare and regulating Earth’s life support systems but many gaps in our knowledge remain regarding how terrestrial plant communities respond to changes in climate or human actions. I used field experiments distributed across three dryland ecosystems in North America to evaluate the consequences of changing precipitation and physical disturbance on plant community structure and function. Evidence from experiments and observational work exploring both plant community composition and ecological processes suggest that physical disturbance and precipitation reductions can reduce the diversity and function of these dryland ecosystems. Specifically, I found that aboveground net primary productivity could be reduced in an interactive manner when precipitation reductions and physical disturbance co-occur, and that within sites, this reduction in productivity was greater when growing-season precipitation was low. Further, I found that these dryland plant communities, commonly dominated by highly drought-resistant shrubs and perennial grasses, were not capable of compensating for the absence of these dominant shrubs and perennial grasses when they were removed by disturbance, and that precipitation reductions (as predicted to occur from anthropogenic climate change) exacerbate these gaps. Collectively, the results of the field experiment suggest that current management paradigms of maintaining cover and structure of native perennial plants in dryland systems are well founded and may be especially important as climate variability increases over time. Evaluating how these best management practices take place in the real world is an important extension of fundamental ecological research. To address the research-management gap in the context of dryland ecosystems in the western US, I used a set of environmental management plans and remotely sensed data to investigate how ecosystem services in drylands are accounted for, both as a supply from the land base and as a demand from stakeholders. Focusing on a less-investigated land base in the United States–areas owned and managed by the Department of Defense–I explored how ecosystem services are produced by this unique land management arrangement even if they are not explicitly managed for under current management schemes. My findings support a growing body of evidence that Department of Defense lands represent a valuable conservation opportunity, both for biodiversity and ecosystem services, if management regimes fully integrate the ecosystem services concept.
ContributorsJordan, Samuel (Author) / Grimm, Nancy (Thesis advisor) / Reed, Sasha (Committee member) / Wu, Jianguo (Committee member) / Throop, Heather (Committee member) / Arizona State University (Publisher)
Created2024
192995-Thumbnail Image.png
Description
Functioning freshwater ecosystems are widely recognized as a planetary boundary for the continued human inhabitation of our planet, but little is known about the tradeoffs at the nexus of food, energy and water. In this dissertation I explored the effects of hydrologic variability in the Lower Mekong Basin (LMB)

Functioning freshwater ecosystems are widely recognized as a planetary boundary for the continued human inhabitation of our planet, but little is known about the tradeoffs at the nexus of food, energy and water. In this dissertation I explored the effects of hydrologic variability in the Lower Mekong Basin (LMB) on rice production and functional structure of fish catches. I then examined the tradeoffs at the intersection of fish and rice harvest as a function of hydrologic variability and modeled production under novel engineered hydrologic scenarios. I modeled rice production using a Multivariate Autoregressive State Space (MARSS) model and mechanistically tested for the effect of saline intrusion. I found rice production to be heterogeneously affected by hydrology; in saline afflicted areas, floods had a positive effect size on production, whereas in non-saline afflicted areas, floods had a negative effect size on production. To address hydrologic filtering of the functional structure of fish catches, I collected thousands of specimens from over 100 LMB species in collaboration with Cambodia’s Inland Fisheries Research and Development institute and the Royal University of Agriculture. LMB fishes comprise a large portion of the 1,200 known species in the basin and have historically provided a substantial amount of animal protein to 60 million people in the region. Using an RLQ, co-inertia analysis, I found four functionally relevant morphological trats that were significantly associated with hydrologic variation—mouth position, maxillary length, relative body depth, and relative head depth. These traits are associated with many of the threated species in the LMB, which make up a large portion of the 1200 known species in the basin and have historically provided a substantial amount of animal protein to 60 million people in the region. To examine the tradeoffs within food systems, I used MARSS maximum likelihood estimation to forecast fish and rice production throughout the LMB under different hydrologic scenarios. I end my dissertation with an opinion piece on NexGen Mekong Scientists, a program I started in 2020 with funding from the United States Department of State.
ContributorsHolway, Joseph Henry (Author) / Sabo, John (Thesis advisor) / Grimm, Nancy (Committee member) / Holtgrieve, Gordon (Committee member) / Winemiller, Kirk (Committee member) / Hanemann, Michael (Committee member) / Arizona State University (Publisher)
Created2024
156882-Thumbnail Image.png
Description
Dissolved organic matter (DOM) is an important part of aquatic foodwebs because it contains carbon, nitrogen, and other elements required by heterotrophic organisms. It has many sources that determine its molecular composition, nutrient content, and biological lability and in turn, influence whether it is retained and processed in the stream

Dissolved organic matter (DOM) is an important part of aquatic foodwebs because it contains carbon, nitrogen, and other elements required by heterotrophic organisms. It has many sources that determine its molecular composition, nutrient content, and biological lability and in turn, influence whether it is retained and processed in the stream reach or exported downstream. I examined the composition of DOM from vascular wetland plants, filamentous algae, and riparian tree leaf litter in Sonoran Desert streams and its decomposition by stream microbes. I used a combination of field observations, in-situ experiments, and a manipulative laboratory incubation to test (1) how dominant primary producers influence DOM chemical composition and ecosystem metabolism at the reach scale and (2) how DOM composition and nitrogen (N) content control microbial decomposition and stream uptake of DOM. I found that differences in streamwater DOM composition between two distinct reaches of Sycamore Creek did not affect in-situ stream respiration and gross primary production rates. Stream sediment microbial respiration rates did not differ significantly when incubated in the laboratory with DOM from wetland plants, algae, and leaf litter, thus all sources were similarly labile. However, whole-stream uptake of DOM increased from leaf to algal to wetland plant leachate. Desert streams have the potential to process DOM from leaf, wetland, and algal sources, though algal and wetland DOM, due to their more labile composition, can be more readily retained and mineralized.
ContributorsKemmitt, Kathrine (Author) / Grimm, Nancy (Thesis advisor) / Hartnett, Hilairy (Committee member) / Throop, Heather (Committee member) / Arizona State University (Publisher)
Created2018
154019-Thumbnail Image.png
Description

An understanding of the formation of spatial heterogeneity is important because spatial heterogeneity leads to functional consequences at the ecosystem scale; however, such an understanding is still limited. Particularly, research simultaneously considering both external variables and internal feedbacks (self-organization) is rare, partly because these two drivers are addressed under different

An understanding of the formation of spatial heterogeneity is important because spatial heterogeneity leads to functional consequences at the ecosystem scale; however, such an understanding is still limited. Particularly, research simultaneously considering both external variables and internal feedbacks (self-organization) is rare, partly because these two drivers are addressed under different methodological frameworks. In this dissertation, I show the prevalence of internal feedbacks and their interaction with heterogeneity in the preexisting template to form spatial pattern. I use a variety of techniques to account for both the top-down template effect and bottom-up self-organization. Spatial patterns of nutrients in stream surface water are influenced by the self-organized patch configuration originating from the internal feedbacks between nutrient concentration, biological patchiness, and the geomorphic template. Clumps of in-stream macrophyte are shaped by the spatial gradient of water permanence and local self-organization. Additionally, significant biological interactions among plant species also influence macrophyte distribution. The relative contributions of these drivers change in time, responding to the larger external environments or internal processes of ecosystem development. Hydrologic regime alters the effect of geomorphic template and self-organization on in-stream macrophyte distribution. The relative importance of niche vs. neutral processes in shaping biodiversity pattern is a function of hydrology: neutral processes are more important in either very high or very low discharge periods. For the spatial pattern of nutrients, as the ecosystem moves toward late succession and nitrogen becomes more limiting, the effect of self-organization intensifies. Changes in relative importance of different drivers directly affect ecosystem macroscopic properties, such as ecosystem resilience. Stronger internal feedbacks in average to wetter years are shown to increase ecosystem resistance to elevated external stress, and make the backward shifts (vegetation loss) much more gradual. But it causes increases in ecosystem hysteresis effect. Finally, I address the question whether functional consequences of spatial heterogeneity feed back to influence the processes from which spatial heterogeneity emerged through a conceptual review. Such feedbacks are not likely. Self-organized spatial patterning is a result of regular biological processes of organisms. Individual organisms do not benefit from such order. It is order for free, and for nothing.

ContributorsDong, Xiaolin (Author) / Grimm, Nancy (Thesis advisor) / Muneepeerakul, Rachata (Thesis advisor) / Franklin, Janet (Committee member) / Heffernan, James B (Committee member) / Sabo, John (Committee member) / Arizona State University (Publisher)
Created2015
153351-Thumbnail Image.png
Description

Humans have dramatically increased phosphorus (P) availability in terrestrial and aquatic ecosystems. As P is often a limiting nutrient of primary production, changes in its availability can have dramatic effects on ecosystem processes. I examined the effects of calcium carbonate (CaCO3) deposition, which can lower P concentrations via coprecipitation of

Humans have dramatically increased phosphorus (P) availability in terrestrial and aquatic ecosystems. As P is often a limiting nutrient of primary production, changes in its availability can have dramatic effects on ecosystem processes. I examined the effects of calcium carbonate (CaCO3) deposition, which can lower P concentrations via coprecipitation of phosphate, on P availability in two systems: streams in the Huachuca Mountains, Arizona, and a stream, Río Mesquites, in Cuatro Ciénegas, México. Calcium carbonate forms as travertine in the former and within the microbialites of the latter. Despite these differences, CaCO3 deposition led to lowered P availability in both systems. By analyzing a three-year dataset of water chemistry from the Huachuca Mountain streams, I determined that P concentrations were negatively related to CaCO3 deposition rates. I also discovered that CaCO3 was positively correlated with nitrogen concentrations, suggesting that the stoichiometric effect of CaCO3 deposition on nutrient availability is due not only to coprecipitation of phosphate, but also to P-related constraints on biotic nitrogen uptake. Building from these observations, bioassays of nutrient limitation of periphyton growth suggest that P limitation is more prevalent in streams with active CaCO3 deposition than those without. Furthermore, when I experimentally reduced rates of CaCO3 deposition within one of the streams by partial light-exclusion, areal P uptake lengths decreased, periphyton P content and growth increased, and periphyton nutrient limitation by P decreased. In Río Mesquites, CaCO3 deposition was also associated with P limitation of microbial growth. There, I investigated the consequences of reductions in CaCO3 deposition with several methods. Calcium removal led to increased concentrations of P in the microbial biomass while light reductions decreased microbial biomass and chemical inhibition had no effect. These results suggest that CaCO3 deposition in microbialites does limit biological uptake of P, that photoautotrophs play an important role in nutrient acquisition, and, combined with other experimental observations, that sulfate reduction may support CaCO3 deposition in the microbialite communities of Río Mesquites. Overall, my results suggest that the effects of CaCO3 deposition on P availability are general and this process should be considered when managing nutrient flows across aquatic ecosystems.

ContributorsCorman, Jessica R. (Author) / Elser, James J (Thesis advisor) / Anbar, Ariel D (Committee member) / Childers, Daniel L. (Committee member) / Grimm, Nancy (Committee member) / Souza, Valeria (Committee member) / Arizona State University (Publisher)
Created2015
152972-Thumbnail Image.png
Description

Though cities occupy only a small percentage of Earth's terrestrial surface, humans concentrated in urban areas impact ecosystems at local, regional and global scales. I examined the direct and indirect ecological outcomes of human activities on both managed landscapes and protected native ecosystems in and around cities. First, I used

Though cities occupy only a small percentage of Earth's terrestrial surface, humans concentrated in urban areas impact ecosystems at local, regional and global scales. I examined the direct and indirect ecological outcomes of human activities on both managed landscapes and protected native ecosystems in and around cities. First, I used highly managed residential yards, which compose nearly half of the heterogeneous urban land area, as a model system to examine the ecological effects of people's management choices and the social drivers of those decisions. I found that a complex set of individual and institutional social characteristics drives people's decisions, which in turn affect ecological structure and function across scales from yards to cities. This work demonstrates the link between individuals' decision-making and ecosystem service provisioning in highly managed urban ecosystems.

Second, I examined the distribution of urban-generated air pollutants and their complex ecological outcomes in protected native ecosystems. Atmospheric carbon dioxide (CO2), reactive nitrogen (N), and ozone (O3) are elevated near human activities and act as both resources and stressors to primary producers, but little is known about their co-occurring distribution or combined impacts on ecosystems. I investigated the urban "ecological airshed," including the spatial and temporal extent of N deposition, as well as CO2 and O3 concentrations in native preserves in Phoenix, Arizona and the outlying Sonoran Desert. I found elevated concentrations of ecologically relevant pollutants co-occur in both urban and remote native lands at levels that are likely to affect ecosystem structure and function. Finally, I tested the combined effects of CO2, N, and O3 on the dominant native and non-native herbaceous desert species in a multi-factor dose-response greenhouse experiment. Under current and predicted future air quality conditions, the non-native species (Schismus arabicus) had net positive growth despite physiological stress under high O3 concentrations. In contrast, the native species (Pectocarya recurvata) was more sensitive to O3 and, unlike the non-native species, did not benefit from the protective role of CO2. These results highlight the vulnerability of native ecosystems to current and future air pollution over the long term. Together, my research provides empirical evidence for future policies addressing multiple stressors in urban managed and native landscapes.

ContributorsMiessner Cook, Elizabeth (Author) / Hall, Sharon J (Thesis advisor) / Boone, Christopher G (Committee member) / Collins, Scott L. (Committee member) / Grimm, Nancy (Committee member) / Arizona State University (Publisher)
Created2014
155657-Thumbnail Image.png
Description

Constructed treatment wetlands (CTW) have been a cost-efficient technological solution to treat different types of wastewater but may also be sources of emitters of methane (CH4) and nitrous oxide (N2O). Thus, my objective for this dissertation was to investigate CH4 and N2O fluxes via multiple pathways from the Tres Rios

Constructed treatment wetlands (CTW) have been a cost-efficient technological solution to treat different types of wastewater but may also be sources of emitters of methane (CH4) and nitrous oxide (N2O). Thus, my objective for this dissertation was to investigate CH4 and N2O fluxes via multiple pathways from the Tres Rios CTW located in Phoenix, AZ, USA. I measured gas fluxes from the CTW along a whole-system gradient (from inflow to outflow) and a within-marsh gradient (shoreline, middle, and open water sites). I found higher diffusive CH4 release in the summer compared to spring and winter seasons. Along the whole-system gradient, I found greater CH4 and N2O emission fluxes near the inflow compared to near the outflow. Within the vegetated marsh, I found greater CH4 emission fluxes at the vegetated marsh subsites compared to the open water. In contrast, N2O emissions were greater at the marsh-open water locations compared to interior marsh. To study the plant-mediated pathway, I constructed small gas chambers fitted to Typha spp. leaves. I found plant-mediated CH4 fluxes were greater near the outflow than near the inflow and that CH4 fluxes were higher from lower sections of plants compared to higher sections. Overall, Typha spp. emitted a mean annual daily flux rate of 358.23 mg CH4 m-2 d-1. Third, using a 30-day mesocosm experiment I studied the effects of three different drydown treatments (2, 7, 14 days) on the fluxes of CH4 and N2O from flooded CTW soils. I found that CH4 fluxes were not significantly affected by soil drydown events. Soils that were dry for 7 days shifted from being N2O sources to sinks upon inundation. As a result, the 7-day drydown soils were sinks while the 14-day drydown soils showed significant N2O release. My results emphasize the importance of studying ecological processes in CTWs to improve their design and management strategies so we can better mitigate their greenhouse gas emissions.

ContributorsRamos, Jorge, 1984- (Author) / Childers, Daniel L. (Thesis advisor) / Grimm, Nancy (Committee member) / Sala, Osvaldo E. (Committee member) / Vivoni, Enrique R (Committee member) / Arizona State University (Publisher)
Created2017
157859-Thumbnail Image.png
Description
Soil organic carbon (SOC) is a critical component of the global carbon (C) cycle, accounting for more C than the biotic and atmospheric pools combined. Microbes play an important role in soil C cycling, with abiotic conditions such as soil moisture and temperature governing microbial activity and subsequent soil C

Soil organic carbon (SOC) is a critical component of the global carbon (C) cycle, accounting for more C than the biotic and atmospheric pools combined. Microbes play an important role in soil C cycling, with abiotic conditions such as soil moisture and temperature governing microbial activity and subsequent soil C processes. Predictions for future climate include warmer temperatures and altered precipitation regimes, suggesting impacts on future soil C cycling. However, it is uncertain how soil microbial communities and subsequent soil organic carbon pools will respond to these changes, particularly in dryland ecosystems. A knowledge gap exists in soil microbial community responses to short- versus long-term precipitation alteration in dryland systems. Assessing soil C cycle processes and microbial community responses under current and altered precipitation patterns will aid in understanding how C pools and cycling might be altered by climate change. This study investigates how soil microbial communities are influenced by established climate regimes and extreme changes in short-term precipitation patterns across a 1000 m elevation gradient in northern Arizona, where precipitation increases with elevation. Precipitation was manipulated (50% addition and 50% exclusion of ambient rainfall) for two summer rainy seasons at five sites across the elevation gradient. In situ and ex situ soil CO2 flux, microbial biomass C, extracellular enzyme activity, and SOC were measured in precipitation treatments in all sites. Soil CO2 flux, microbial biomass C, extracellular enzyme activity, and SOC were highest at the three highest elevation sites compared to the two lowest elevation sites. Within sites, precipitation treatments did not change microbial biomass C, extracellular enzyme activity, and SOC. Soil CO2 flux was greater under precipitation addition treatments than exclusion treatments at both the highest elevation site and second lowest elevation site. Ex situ respiration differed among the precipitation treatments only at the lowest elevation site, where respiration was enhanced in the precipitation addition plots. These results suggest soil C cycling will respond to long-term changes in precipitation, but pools and fluxes of carbon will likely show site-specific sensitivities to short-term precipitation patterns that are also expected with climate change.
ContributorsMonus, Brittney (Author) / Throop, Heather L (Thesis advisor) / Ball, Becky A (Committee member) / Hultine, Kevin R (Committee member) / Munson, Seth M (Committee member) / Arizona State University (Publisher)
Created2019