Matching Items (5)
Filtering by

Clear all filters

156218-Thumbnail Image.png
Description
This work investigates the effects of non-random sampling on our understanding of species distributions and their niches. In its most general form, bias is systematic error that can obscure interpretation of analytical results by skewing samples away from the average condition of the system they represent. Here I use species

This work investigates the effects of non-random sampling on our understanding of species distributions and their niches. In its most general form, bias is systematic error that can obscure interpretation of analytical results by skewing samples away from the average condition of the system they represent. Here I use species distribution modelling (SDM), virtual species, and multiscale geographically weighted regression (MGWR) to explore how sampling bias can alter our perception of broad patterns of biodiversity by distorting spatial predictions of habitat, a key characteristic in biogeographic studies. I use three separate case studies to explore: 1) How methods to account for sampling bias in species distribution modeling may alter estimates of species distributions and species-environment relationships, 2) How accounting for sampling bias in fossil data may change our understanding of paleo-distributions and interpretation of niche stability through time (i.e. niche conservation), and 3) How a novel use of MGWR can account for environmental sampling bias to reveal landscape patterns of local niche differences among proximal, but non-overlapping sister taxa. Broadly, my work shows that sampling bias present in commonly used federated global biodiversity observations is more than enough to degrade model performance of spatial predictions and niche characteristics. Measures commonly used to account for this bias can negate much loss, but only in certain conditions, and did not improve the ability to correctly identify explanatory variables or recreate species-environment relationships. Paleo-distributions calibrated on biased fossil records were improved with the use of a novel method to directly estimate the biased sampling distribution, which can be generalized to finer time slices for further paleontological studies. Finally, I show how a novel coupling of SDM and MGWR can illuminate local differences in niche separation that more closely match landscape genotypic variability in the two North American desert tortoise species than does their current taxonomic delineation.
ContributorsInman, Richard (Author) / Franklin, Janet (Thesis advisor) / Fotheringham, A. Stewart (Committee member) / Dorn, Ronald (Committee member) / Arizona State University (Publisher)
Created2018
153699-Thumbnail Image.png
Description
The Great Bustard (Otis tarda) is an iconic species of the temperate grasslands of Europe and Asia, a habitat that is among the least protected ecosystems in the world. A distinct subspecies, the Asian Great Bustard (O. t. dybowskii), is poorly understood due to its wary nature and remote range

The Great Bustard (Otis tarda) is an iconic species of the temperate grasslands of Europe and Asia, a habitat that is among the least protected ecosystems in the world. A distinct subspecies, the Asian Great Bustard (O. t. dybowskii), is poorly understood due to its wary nature and remote range in Siberia, Mongolia, and northern China. This subspecies is now endangered by rapid development.

Using satellite telemetry and remote sensing, I investigated three aspects of the Asian Great Bustard’s ecology critical to its conservation: migratory routes, migratory cues, and habitat use patterns. I found that Asian Great Bustards spent one-third of the year on a 2000 km migratory pathway, a distance twice as far as has previously been recorded for the species. Tracked individuals moved nomadically over large winter territories and did not repeat migratory stopovers, complicating conservation planning. Migratory timing was variable and migratory movements were significantly correlated with weather cues. Specifically, bustards migrated on days when wind support was favorable and temperature presaged warmer temperatures on the breeding grounds (spring) or advancing winter weather (fall). On the breeding grounds, Asian Great Bustards used both steppe and wheat agriculture habitat. All recorded reproductive attempts failed, regardless of habitat in which the nest was placed. Agricultural practices are likely to intensify in the coming decade, which would present further challenges to reproduction. The distinct migratory behavior and habitat use patterns of the Asian Great Bustard are likely adaptations to the climate and ecology of Inner Asia and underscore the importance of conserving these unique populations.

My research indicates that conservation of the Asian Great Bustard will require a landscape-level approach. This approach should incorporate measures at the breeding grounds to raise reproductive success, alongside actions on the migratory pathway to ensure appropriate habitat and reduce adult mortality. To secure international cooperation, I proposed that an increased level of protection should be directed toward the Great Bustard under the Convention on Migratory Species (CMS). That proposal, accepted by the Eleventh Conference of Parties to CMS, provides recommendations for conservation action and illustrates the transdisciplinary approach I have taken in this research.
ContributorsKessler, Aimee (Author) / Smith, Andrew T. (Thesis advisor) / Brown, David (Committee member) / Franklin, Janet (Committee member) / McGraw, Kevin (Committee member) / Wu, Jianguo (Committee member) / Arizona State University (Publisher)
Created2015
154676-Thumbnail Image.png
Description
Urban riparian corridors have the capacity to maintain high levels of abundance and biodiversity. Additionally, urban rivers also offer environmental amenities and can be catalysts for social and economic revitalization in human communities. Despite its importance for both humans and wildlife, blue space in cities used by waterbirds has received

Urban riparian corridors have the capacity to maintain high levels of abundance and biodiversity. Additionally, urban rivers also offer environmental amenities and can be catalysts for social and economic revitalization in human communities. Despite its importance for both humans and wildlife, blue space in cities used by waterbirds has received relatively little focus in urban bird studies. My principal objective was to determine how urbanization and water availability affect waterbird biodiversity in an arid city. I surveyed 36 transects stratified across a gradient of urbanization and water availability along the Salt River, a LTER long-term study system located in Phoenix, Arizona. Water physiognomy (shape and size) was the largest factor in shaping the bird community. Connectivity was an important element for waterbird diversity, but not abundance. Urbanization had guild-specific effects on abundance but was not important for waterbird diversity. Habitat-level environmental characteristics were more important than land use on waterbird abundance, as well as diversity. Diving and fish-eating birds were positively associated with large open bodies of water, whereas dabbling ducks, wading birds, and marsh species favored areas with large amounts of shoreline and emergent vegetation. My study supports that Phoenix blue space offers an important subsidy to migrating waterbird communities; while alternative habitat is not a replacement, it is important to consider as part of the larger conservation picture as traditional wetlands decline. Additionally, arid cities have the potential to support high levels of waterbird biodiversity, heterogeneous land use matrix can be advantageous in supporting regional diversity, and waterbirds are tolerant of urbanization if proper resources are provided via the habitat. The implications of this study are particularly relevant to urban planning in arid cities; Phoenix alone contains over 1,400 bodies of water, offering the opportunity to design and improve urban blue space to optimize potential habitat while providing public amenities.
ContributorsBurnette, Riley (Author) / Bateman, Heather (Thesis advisor) / Franklin, Janet (Committee member) / Allen, Daniel (Committee member) / Arizona State University (Publisher)
Created2016
154019-Thumbnail Image.png
Description

An understanding of the formation of spatial heterogeneity is important because spatial heterogeneity leads to functional consequences at the ecosystem scale; however, such an understanding is still limited. Particularly, research simultaneously considering both external variables and internal feedbacks (self-organization) is rare, partly because these two drivers are addressed under different

An understanding of the formation of spatial heterogeneity is important because spatial heterogeneity leads to functional consequences at the ecosystem scale; however, such an understanding is still limited. Particularly, research simultaneously considering both external variables and internal feedbacks (self-organization) is rare, partly because these two drivers are addressed under different methodological frameworks. In this dissertation, I show the prevalence of internal feedbacks and their interaction with heterogeneity in the preexisting template to form spatial pattern. I use a variety of techniques to account for both the top-down template effect and bottom-up self-organization. Spatial patterns of nutrients in stream surface water are influenced by the self-organized patch configuration originating from the internal feedbacks between nutrient concentration, biological patchiness, and the geomorphic template. Clumps of in-stream macrophyte are shaped by the spatial gradient of water permanence and local self-organization. Additionally, significant biological interactions among plant species also influence macrophyte distribution. The relative contributions of these drivers change in time, responding to the larger external environments or internal processes of ecosystem development. Hydrologic regime alters the effect of geomorphic template and self-organization on in-stream macrophyte distribution. The relative importance of niche vs. neutral processes in shaping biodiversity pattern is a function of hydrology: neutral processes are more important in either very high or very low discharge periods. For the spatial pattern of nutrients, as the ecosystem moves toward late succession and nitrogen becomes more limiting, the effect of self-organization intensifies. Changes in relative importance of different drivers directly affect ecosystem macroscopic properties, such as ecosystem resilience. Stronger internal feedbacks in average to wetter years are shown to increase ecosystem resistance to elevated external stress, and make the backward shifts (vegetation loss) much more gradual. But it causes increases in ecosystem hysteresis effect. Finally, I address the question whether functional consequences of spatial heterogeneity feed back to influence the processes from which spatial heterogeneity emerged through a conceptual review. Such feedbacks are not likely. Self-organized spatial patterning is a result of regular biological processes of organisms. Individual organisms do not benefit from such order. It is order for free, and for nothing.

ContributorsDong, Xiaolin (Author) / Grimm, Nancy (Thesis advisor) / Muneepeerakul, Rachata (Thesis advisor) / Franklin, Janet (Committee member) / Heffernan, James B (Committee member) / Sabo, John (Committee member) / Arizona State University (Publisher)
Created2015
158407-Thumbnail Image.png
Description

Interdisciplinary research has highlighted how social-ecological dynamics drive the structure and function of the urban landscape across multiple scales. Land management decisions operate across various levels, from individuals in their backyard to local municipalities and broader political-economic forces. These decisions then scale up and down across the landscape to influence

Interdisciplinary research has highlighted how social-ecological dynamics drive the structure and function of the urban landscape across multiple scales. Land management decisions operate across various levels, from individuals in their backyard to local municipalities and broader political-economic forces. These decisions then scale up and down across the landscape to influence ecological functioning, such as the provisioning of biodiversity. Likewise, people are influenced by, and respond to, their environment. However, there is a lack of integrated research, especially research that considers the spatial and temporal complexities of social-ecological dynamics, to fully understand how people influence ecosystems or how the resulting landscape in turn influences human decision making, attitudes, and well-being.

My dissertation connects these interdisciplinary themes to examine three questions linked by their investigation of the interactions between people and biodiversity: (1) How do the social and spatial patterns within an arid city affect people’s attitudes about their regional desert environment? (2) How are novel communities in cities assembled given the social-ecological dynamics that influence the processes that structure ecological communities? (3) How can we reposition bird species traits into a conservation framework that explains the complexity of the interactions between people and urban bird communities? I found that social-ecological dynamics between people, the environment, and biodiversity are tightly interwoven in urban ecosystems. The regional desert environment shapes people’s attitudes along spatial and social configurations, which holds implications for yard management decisions. Multi-scalar management decisions then influence biodiversity throughout cities, which shifts public perceptions of urban nature. Overall, my research acts as a bridge between social and ecological sciences to theoretically and empirically integrate research focused on biodiversity conservation in complex, social-ecological systems. My goal as a scholar is to understand the balance between social and ecological implications of landscape change to support human well-being and promote biodiversity conservation.

ContributorsAndrade, Riley (Author) / Franklin, Janet (Thesis advisor) / Larson, Kelli L (Thesis advisor) / Hondula, David M. (Committee member) / Lerman, Susannah B (Committee member) / Arizona State University (Publisher)
Created2020