Matching Items (3)
Filtering by

Clear all filters

153912-Thumbnail Image.png
Description
Stream flow permanence plays a critical role in determining floristic composition, abundance, and diversity in the Sonoran Desert, but questions remain about the effects of stream flow permanence on butterfly composition, abundance, and diversity. Understanding the effects of flow permanence on butterflies and relevant subsets of butterflies (such as butterflies

Stream flow permanence plays a critical role in determining floristic composition, abundance, and diversity in the Sonoran Desert, but questions remain about the effects of stream flow permanence on butterfly composition, abundance, and diversity. Understanding the effects of flow permanence on butterflies and relevant subsets of butterflies (such as butterflies whose host plants are present) and comparing them to these same effects on plants and relevant subsets of plants (such as butterfly nectar plants and larval host plants) provided insight into pollinator and riparian conservation and restoration.

I surveyed four Sonoran desert stream sites, and found significant relationships between flow permanence and plant and butterfly species richness and abundance, as well as strong relationships between plant and butterfly abundance and between plant and butterfly species richness. Most notably, my results pointed to hosted butterflies as a break-out category of butterflies which may more clearly delineate ecological relationships between butterfly and plant abundance and diversity along Sonoran Desert streams; this can inform conservation decisions. Managing for hosted (resident) butterflies will necessarily entail managing for the presence of surface water, nectar forage, varying levels of canopy cover, and plant, nectar plant, and host plant diversity since the relationships between hosted butterfly species richness and/or abundance and all of these variables were significant, both statistically and ecologically.
ContributorsButler, Lane (Author) / Stromberg, Juliet C. (Thesis advisor) / Makings, Elizabeth (Committee member) / Pearson, David L (Committee member) / Boggess, May (Committee member) / Buchmann, Stephen (Committee member) / Arizona State University (Publisher)
Created2015
191027-Thumbnail Image.png
Description
Understanding the effects of fire on the Sonoran Desert is of critical importance as rising temperatures and changing weather patterns increase the frequency and size of wildfires. Seed banks are an important component in post-fire landscape recovery as the seeds that remain in the soil are an indicator of a

Understanding the effects of fire on the Sonoran Desert is of critical importance as rising temperatures and changing weather patterns increase the frequency and size of wildfires. Seed banks are an important component in post-fire landscape recovery as the seeds that remain in the soil are an indicator of a landscape’s future trajectory. The purpose of this study is to determine the lasting impacts of fire on the soil seed bank of the Sonoran Desert and to identify potential concerns affecting post-fire recovery and restoration. The study site was located in the Arizona Upland division of the Sonoran Desert, Arizona, United States. Soil samples were collected from five burned sites with increasing time since fire, and five nearby unburned sites used as a control. A seedling emergence test was conducted to investigate the density and richness of the seed bank of burned and unburned sites. Seed densities and species richness for sites were calculated using germination results. Findings were analyzed using non-parametric analyses comparing changes in burned and unburned sites over time. Results found that burn status and time since fire had no significant impact on seed density. Graminoid and forb densities were statistically consistent across burn status and time since fire. While species richness was consistent across both plot types, burned samples typically had fewer species than unburned samples. Burned and unburned plots revealed a dominance of annual species with limited presence of woody perennials. While seed densities and species richness are relatively unchanged across burned and unburned sites over time, the lack of woody perennials in the seed bank raises concerns about landscape recovery trajectories in burned sites. These results suggest that restoration efforts focused on maintaining the presence of woody trees and shrubs in the landscape may have the most impact.
ContributorsCountryman, Kristen (Author) / Makings, Elizabeth (Thesis advisor) / Pigg, Kathleen (Thesis advisor) / Lata, Mary (Committee member) / Arizona State University (Publisher)
Created2023
168820-Thumbnail Image.png
Description
Bouteloua eriopoda (Torr.) Torr., also known as black grama, is a perennial bunchgrass native to arid and semiarid ecosystems in the southwestern region of North America. As a result of anthropogenic climate change, this region is predicted to increase in aridity and experience more frequent extreme drought and extreme wet

Bouteloua eriopoda (Torr.) Torr., also known as black grama, is a perennial bunchgrass native to arid and semiarid ecosystems in the southwestern region of North America. As a result of anthropogenic climate change, this region is predicted to increase in aridity and experience more frequent extreme drought and extreme wet years. This change in precipitation will no doubt affect black grama; however, few studies have investigated how the specific structural components of this grass will respond. The purpose of this study was to examine the effects of years since start of treatment and annual precipitation amount on tiller and stolon densities, and to test for interaction between the two predictor variables. Additionally, the effects of annual precipitation on ramets and axillary buds were investigated. By using 36 experimental plots that have been receiving drought, irrigated, or control treatments since 2007, tiller density was the most responsive component to both annual precipitation amount and years since start of treatment. Years since start of treatment and annual precipitation amount also had a statistically significant interaction, meaning the effect of precipitation amount on tiller density differs depending on how many years have passed since treatments began. Stolon density was the second-most responsive component; the predictor variables were found to have no statistically significant interaction, meaning their effects on stolon density are independent of one another. Ramet density, ramets per stolon, and axillary bud metabolic activity and density were found to be independent of annual precipitation amount for 2021. The results indicate that multiple-year extreme wet and multiple-year extreme dry conditions in the Southwest will both likely reduce tiller and stolon densities in black grama patches. Prolonged drought conditions reduced tiller and stolon production in black grama because of negative legacies from previous years. Reduced production during prolonged wet conditions could be due to increased competition between adjacent plants.
ContributorsSutter, Bryce Madison (Author) / Sala, Osvaldo E (Thesis advisor) / Makings, Elizabeth (Committee member) / Wojciechowski, Martin F (Committee member) / Arizona State University (Publisher)
Created2022