Matching Items (4)
Filtering by

Clear all filters

153434-Thumbnail Image.png
Description
A new loop configuration capable of reducing power radiation magnitudes lower than conventional loops has been developed. This configuration is demonstrated for the case of two coaxial loops of 0.1 meter radius coupled via the magnetic reactive field. Utilizing electromagnetism theory, techniques from antenna design and a new near field

A new loop configuration capable of reducing power radiation magnitudes lower than conventional loops has been developed. This configuration is demonstrated for the case of two coaxial loops of 0.1 meter radius coupled via the magnetic reactive field. Utilizing electromagnetism theory, techniques from antenna design and a new near field design initiative, the ability to design a magnetic field has been investigated by using a full wave simulation tool. The method for realization is initiated from first order physics model, ADS and onto a full wave situation tool for the case of a non-radiating helical loop. The exploration into the design of a magnetic near field while mitigating radiation power is demonstrated using an real number of twists to form a helical wire loop while biasing the integer twisted loop in a non-conventional moebius termination. The helix loop setup as a moebius loop convention can also be expressed as a shorted antenna scheme. The 0.1 meter radius helix antenna is biased with a 1MHz frequency that categorized the antenna loop as electrically small. It is then demonstrated that helical configuration reduces the electric field and mitigates power radiation into the far field. In order to compare the radiated power reduction performance of the helical loop a shielded loop is used as a baseline for comparison. The shielded loop system of the same geometric size and frequency is shown to have power radiation expressed as -46.1 dBm. The power radiated mitigation method of the helix loop reduces the power radiated from the two loop system down to -98.72 dBm.
ContributorsMoreno, Fernando (Author) / Diaz, Rodolfo (Thesis advisor) / Aberle, James T., 1961- (Committee member) / Kozicki, Michael (Committee member) / Arizona State University (Publisher)
Created2015
151252-Thumbnail Image.png
Description
Semiconductor device scaling has kept up with Moore's law for the past decades and they have been scaling by a factor of half every one and half years. Every new generation of device technology opens up new opportunities and challenges and especially so for analog design. High speed and low

Semiconductor device scaling has kept up with Moore's law for the past decades and they have been scaling by a factor of half every one and half years. Every new generation of device technology opens up new opportunities and challenges and especially so for analog design. High speed and low gain is characteristic of these processes and hence a tradeoff that can enable to get back gain by trading speed is crucial. This thesis proposes a solution that increases the speed of sampling of a circuit by a factor of three while reducing the specifications on analog blocks and keeping the power nearly constant. The techniques are based on the switched capacitor technique called Correlated Level Shifting. A triple channel Cyclic ADC has been implemented, with each channel working at a sampling frequency of 3.33MS/s and a resolution of 14 bits. The specifications are compared with that based on a traditional architecture to show the superiority of the proposed technique.
ContributorsSivakumar, Balasubramanian (Author) / Farahani, Bahar Jalali (Thesis advisor) / Garrity, Douglas (Committee member) / Bakkaloglu, Bertan (Committee member) / Aberle, James T., 1961- (Committee member) / Arizona State University (Publisher)
Created2012
151309-Thumbnail Image.png
Description
This thesis describes the design process used in the creation of a two stage cellular power amplifier. A background for understanding amplifier linearity, device properties, and ACLR estimation is provided. An outline of the design goals is given with a focus on linearity with high efficiency. The full design is

This thesis describes the design process used in the creation of a two stage cellular power amplifier. A background for understanding amplifier linearity, device properties, and ACLR estimation is provided. An outline of the design goals is given with a focus on linearity with high efficiency. The full design is broken into smaller elements which are discussed in detail. The main contribution of this thesis is the description of a novel interstage matching network topology for increasing efficiency. Ultimately the full amplifier design is simulated and compared to the measured results and design goals. It was concluded that the design was successful, and used in a commercially available product.
ContributorsSpivey, Erin (Author) / Aberle, James T., 1961- (Thesis advisor) / Kitchen, Jennifer (Committee member) / Ozev, Sule (Committee member) / Arizona State University (Publisher)
Created2012
ContributorsBerry, John (Performer) / Morgan, Lanny (Performer) / Concert Jazz Band (Performer) / ASU Library. Music Library (Publisher)
Created1986-03-05