Matching Items (9)
Filtering by

Clear all filters

136101-Thumbnail Image.png
Description
In this study, the specific goal was to evaluate the effectiveness of utilizing a novel virtual reality software package with a haptic device to practice spine surgery. This spine surgery simulator was commissioned by Barrow Neurological Institute (BNI) and is as yet untested. To test the simulator, an experiment was

In this study, the specific goal was to evaluate the effectiveness of utilizing a novel virtual reality software package with a haptic device to practice spine surgery. This spine surgery simulator was commissioned by Barrow Neurological Institute (BNI) and is as yet untested. To test the simulator, an experiment was run in which resident neurosurgeons at Barrow Neurological Institute were asked to perform two “virtual surgeries” with the spine surgical simulator, provide observations on the simulator, and then complete a questionnaire evaluating different aspects of the simulator. The mean questionnaire score across all the neurosurgical residents was found to be 65.5 % ± 9.4 % of the maximum score which suggests that certain aspects of the virtual spine surgical simulator were deemed to be effective by the resident neurosurgeons but that improvements need to be made for the simulator to be fully ready as a teaching and planning tool. As of right now, the simulator is more suited as a training tool instead of a planning tool. Improvements that should be implemented include changing the hardware placement of the haptic device and the computer, minimizing aberrant tactile feedback, and adding anatomical and planning detail to the software to provide a more accurate reflection of spine surgery. It was also suggested that future experiments that evaluate an improved simulator should ensure that participants are trained adequately and have enough time to complete surgical operations to get a fair assessment of the tool.
ContributorsIyer, Sudarshan Rajan (Author) / Frakes, David (Thesis director) / Crawford, Neil (Committee member) / Barrett, The Honors College (Contributor) / Harrington Bioengineering Program (Contributor)
Created2015-05
Description

Falls are known to be a common occurrence and a costly one as well, as they are the second leading cause of unintentional deaths and millions of other injuries worldwide. Falls often occur due to an increase in trunk flexion angle, so this experiment aims to reduce the trunk flexion

Falls are known to be a common occurrence and a costly one as well, as they are the second leading cause of unintentional deaths and millions of other injuries worldwide. Falls often occur due to an increase in trunk flexion angle, so this experiment aims to reduce the trunk flexion received while stepping over an obstacle. To achieve this a soft actuator was attached to the trunk and pressure was sent as subjects walked and stepped over an obstacle presented on a treadmill. The pressure is meant to stiffen the back which should in theory reduce the trunk flexion angle and lower the chances of falling. In this experiment, two groups were tested: three participants from a control group (healthy young adults) and three participants from an experimental group (healthy elderly adults). Since elderly adults have the highest fall risk due to overall lack of stability, they are the experimental group and the focus for this experiment. The results from the study showed that elderly adults had a beneficial effect with the soft actuator as there was a noticeable difference in trunk flexion when the device was attached. The experiment also supported prior research that stated that trunk flexion was greater in elderly adults than younger adults. Despite the positive results, further studies should be done to prove that the soft devices influence lowering trunk flexion angle as well as to see if the device has any noticeable effect on younger adults.

ContributorsFisher, Caleb (Author) / Lee, Hyunglae (Thesis director) / Olivas, Alyssa (Committee member) / Barrett, The Honors College (Contributor) / Harrington Bioengineering Program (Contributor)
Created2023-05
ContributorsFisher, Caleb (Author) / Lee, Hyunglae (Thesis director) / Olivas, Alyssa (Committee member) / Barrett, The Honors College (Contributor) / Harrington Bioengineering Program (Contributor)
Created2023-05
ContributorsFisher, Caleb (Author) / Lee, Hyunglae (Thesis director) / Olivas, Alyssa (Committee member) / Barrett, The Honors College (Contributor) / Harrington Bioengineering Program (Contributor)
Created2023-05
ContributorsFisher, Caleb (Author) / Lee, Hyunglae (Thesis director) / Olivas, Alyssa (Committee member) / Barrett, The Honors College (Contributor) / Harrington Bioengineering Program (Contributor)
Created2023-05
ContributorsFisher, Caleb (Author) / Lee, Hyunglae (Thesis director) / Olivas, Alyssa (Committee member) / Barrett, The Honors College (Contributor) / Harrington Bioengineering Program (Contributor)
Created2023-05
ContributorsFisher, Caleb (Author) / Lee, Hyunglae (Thesis director) / Olivas, Alyssa (Committee member) / Barrett, The Honors College (Contributor) / Harrington Bioengineering Program (Contributor)
Created2023-05
ContributorsFisher, Caleb (Author) / Lee, Hyunglae (Thesis director) / Olivas, Alyssa (Committee member) / Barrett, The Honors College (Contributor) / Harrington Bioengineering Program (Contributor)
Created2023-05
ContributorsFisher, Caleb (Author) / Lee, Hyunglae (Thesis director) / Olivas, Alyssa (Committee member) / Barrett, The Honors College (Contributor) / Harrington Bioengineering Program (Contributor)
Created2023-05