Matching Items (8)
Filtering by

Clear all filters

152724-Thumbnail Image.png
Description
ABSTRACT Enzyme-Induced Carbonate Precipitation (EICP) using a plant-derived form of the urease enzyme to induce the precipitation of calcium carbonate (CaCO3) shows promise as a method of stabilizing soil for the mitigation of fugitive dust. Fugitive dust is a significant problem in Arizona, particularly in Maricopa County. Maricopa County is

ABSTRACT Enzyme-Induced Carbonate Precipitation (EICP) using a plant-derived form of the urease enzyme to induce the precipitation of calcium carbonate (CaCO3) shows promise as a method of stabilizing soil for the mitigation of fugitive dust. Fugitive dust is a significant problem in Arizona, particularly in Maricopa County. Maricopa County is an EPA air quality non-attainment zone, due primarily to fugitive dust, which presents a significant health risk to local residents. Conventional methods for fugitive dust control, including the application of water, are either ineffective in arid climates, very expensive, or limited to short term stabilization. Due to these limitations, engineers are searching for new and more effective ways to stabilize the soil and reduce wind erosion. EICP employs urea hydrolysis, a process in which carbonate precipitation is catalyzed by the urease enzyme, a widely occurring protein found in many plants and microorganisms. Wind tunnel experiments were conducted in the ASU/NASA Planetary Wind Tunnel to evaluate the use of EICP as a means to stabilize soil against fugitive dust emission. Three different soils were tested, including a native Arizona silty-sand, a uniform fine to medium grained silica sand, and mine tailings from a mine in southern Arizona. The test soil was loosely placed in specimen container and the surface was sprayed with an aqueous solution containing urea, calcium chloride, and urease enzyme. After a short period of time to allow for CaCO3 precipitation, the specimens were tested in the wind tunnel. The completed tests show that EICP can increase the detachment velocity compared to bare or wetted soil and thus holds promise as a means of mitigating fugitive dust emissions.
ContributorsKnorr, Brian (Author) / Kavazanjian, Edward (Thesis advisor) / Houston, Sandra (Committee member) / Zapata, Claudia (Committee member) / Arizona State University (Publisher)
Created2014
133118-Thumbnail Image.png
Description
Current practice and a new technology for mitigating fugitive dust on construction sites are compared on the basis of economic, environmental and social impacts for this assessment. Fugitive dust can have serious health impacts, such as repertory illnesses and valley fever, on affected persons and is regulated by the Environmental

Current practice and a new technology for mitigating fugitive dust on construction sites are compared on the basis of economic, environmental and social impacts for this assessment. Fugitive dust can have serious health impacts, such as repertory illnesses and valley fever, on affected persons and is regulated by the Environmental Protection Agency and enforced by state and local agencies. Current practice consists of either relatively continuous application of potable water, a valuable resource, or application of expensive polymers, however, water application is considered the best available technology (BAT). The new technology, developed by the Center of Bio-medicated and Bio-inspired Geotechnics at Arizona State University, consists of application of Enzyme-Induced Carbonate Precipitate (EICP) to create an erosion-resistant crust. This crust is considered a "one and done" solution, until it is disturbed, however will last longer and stay more effective than quickly evaporating water. Future work will need to include how much disturbance is required to disturb the crust until ineffective towards mitigating fugitive dust. Results of the comparison show that a single EICP treatment produces 37 times less pollutants, uses 41 times less water and is 1.14 times cheaper than using water treatment to mitigate fugitive dust on a 7 acre site for 2 weeks (14 days). 14 days is the threshold at where EICP treatment becomes less expensive than water application for the purpose of mitigating fugitive dust. The EICP treatment benefits include lowering global warming inducing emissions, providing better air quality, becoming more cost effective, staying constantly effective to mitigate fugitive dust, and saving potable water.
ContributorsFabian, Aaron Jacob (Author) / Fox, Peter (Thesis director) / Kavazanjian, Edward (Thesis director) / Woolley, Miriam (Committee member) / Civil, Environmental and Sustainable Eng Program (Contributor, Contributor) / Barrett, The Honors College (Contributor)
Created2018-12
137618-Thumbnail Image.png
Description
Currently conventional Subtitle D landfills are the primary means of disposing of our waste in the United States. While this method of waste disposal aims at protecting the environment, it does so through the use of liners and caps that effectively freeze the breakdown of waste. Because this method can

Currently conventional Subtitle D landfills are the primary means of disposing of our waste in the United States. While this method of waste disposal aims at protecting the environment, it does so through the use of liners and caps that effectively freeze the breakdown of waste. Because this method can keep landfills active, and thus a potential groundwater threat for over a hundred years, I take an in depth look at the ability of bioreactor landfills to quickly stabilize waste. In the thesis I detail the current state of bioreactor landfill technologies, assessing the pros and cons of anaerobic and aerobic bioreactor technologies. Finally, with an industrial perspective, I conclude that moving on to bioreactor landfills as an alternative isn't as simple as it may first appear, and that it is a contextually specific solution that must be further refined before replacing current landfills.
ContributorsWhitten, George Avery (Author) / Kavazanjian, Edward (Thesis director) / Allenby, Braden (Committee member) / Houston, Sandra (Committee member) / Civil, Environmental and Sustainable Engineering Programs (Contributor) / Barrett, The Honors College (Contributor)
Created2013-05
171518-Thumbnail Image.png
Description
Two challenges in the implementation of enzyme induced carbonate precipitation(EICP) are the cost of enzyme and the variability of the enzyme. Urease enzyme costs can be lowered drastically with the use of crude extract from plant materials, but experience has shown variability in the source of the crude urease enzyme, the crude urease

Two challenges in the implementation of enzyme induced carbonate precipitation(EICP) are the cost of enzyme and the variability of the enzyme. Urease enzyme costs can be lowered drastically with the use of crude extract from plant materials, but experience has shown variability in the source of the crude urease enzyme, the crude urease enzyme extraction methods, and the concentration of the EICP solution can cause significant variability in the efficacy of the EICP solution. This thesis examines the variability in the efficacy of crude enzyme derived from jack beans (Canavalia ensiformis) and sword beans (Canavalia gladiata), two of the most commonly used sources of urease enzyme for EICP. The sources of variability investigated herein include the crude extraction method (including the effect of the bean husks on extraction) and different chemical constituent concentrations. These effects were assessed using enzyme activity measurements and precipitation efficiency tests. The activity tests were performed via spectrophotometry using Nessler's reagent. The precipitation tests looked at the influence of chemical constituent concentrations of 0.67 M calcium chloride and 1 M urea with non-fat dry milk in the EICP solutions and a higher concentration solution with chemical constituent concentrations of 2 M for both calcium chloride and urea with non-fat dry milk. The high concentration solution was selected based on preliminary testing results to maximize carbonate precipitation in one cycle of treatment. Significant sources of a decline in activity (and increase in variation) of the crude urease enzyme were found in extraction from sword beans with husks, high chemical constituent concentrations, and juicing instead of cheesecloth filtration. This thesis also examines the accuracy of commonly used correlation factors for converting electrical conductivity to urease enzyme activity. Crude jack bean and sword bean urease enzyme activity measurement via electrical conductivity was found to have a correlation coefficient that differed from the previously reported correlation when compared to activity measured via the more accurate spectrophotometry using Nessler’s reagent measurements.
ContributorsPearson, Rayanna (Author) / Kavazanjian, Edward (Thesis advisor) / Khodadadi Tirkolaei, Hamed (Committee member) / Salifu, Emmanuel (Committee member) / Arizona State University (Publisher)
Created2022
157581-Thumbnail Image.png
Description
Zero-Valent Metals (ZVM) are highly reactive materials and have been proved to be effective in contaminant reduction in soils and groundwater remediation. In fact, zero-Valent Iron (ZVI) has proven to be very effective in removing, particularly chlorinated organics, heavy metals, and odorous sulfides. Addition of ZVI has also been proved

Zero-Valent Metals (ZVM) are highly reactive materials and have been proved to be effective in contaminant reduction in soils and groundwater remediation. In fact, zero-Valent Iron (ZVI) has proven to be very effective in removing, particularly chlorinated organics, heavy metals, and odorous sulfides. Addition of ZVI has also been proved in enhancing the methane gas generation in anaerobic digestion of activated sludge. However, no studies have been conducted regarding the effect of ZVM stimulation to Municipal Solid Waste (MSW) degradation. Therefore, a collaborative study was developed to manipulate microbial activity in the landfill bioreactors to favor methane production by adding ZVMs. This study focuses on evaluating the effects of added ZVM on the leachate generated from replicated lab scale landfill bioreactors. The specific objective was to investigate the effects of ZVMs addition on the organic and inorganic pollutants in leachate. The hypothesis here evaluated was that adding ZVM including ZVI and Zero Valent Manganese (ZVMn) will enhance the removal rates of the organic pollutants present in the leachate, likely by a putative higher rate of microbial metabolism. Test with six (4.23 gallons) bioreactors assembled with MSW collected from the Salt River Landfill and Southwest Regional Landfill showed that under 5 grams /liter of ZVI and 0.625 grams/liter of ZVMn additions, no significant difference was observed in the pH and temperature data of the leachate generated from these reactors. The conductivity data suggested the steady rise across all reactors over the period of time. The removal efficiency of sCOD was highest (27.112 mg/lit/day) for the reactors added with ZVMn at the end of 150 days for bottom layer, however the removal rate was highest (16.955 mg/lit/day) for ZVI after the end of 150 days of the middle layer. Similar trends in the results was observed in TC analysis. HPLC study indicated the dominance of the concentration of heptanoate and isovalerate were leachate generated from the bottom layer across all reactors. Heptanoate continued to dominate in the ZVMn added leachate even after middle layer injection. IC analysis concluded the chloride was dominant in the leachate generated from all the reactors and there was a steady increase in the chloride content over the period of time. Along with chloride, fluoride, bromide, nitrate, nitrite, phosphate and sulfate were also detected in considerable concentrations. In the summary, the addition of the zero valent metals has proved to be efficient in removal of the organics present in the leachate.
ContributorsPandit, Gandhar Abhay (Author) / Cadillo – Quiroz, Hinsby (Thesis advisor) / Olson, Larry (Thesis advisor) / Boyer, Treavor (Committee member) / Arizona State University (Publisher)
Created2019
157789-Thumbnail Image.png
Description
The potential of using bio-geo-chemical processes for applications in geotechnical engineering has been widely explored in order to overcome the limitation of traditional ground improvement techniques. Biomineralization via urea hydrolysis, referred to as Microbial or Enzymatic Induced Carbonate Precipitation (MICP/EICP), has been shown to increase soil strength by stimulating precipitation

The potential of using bio-geo-chemical processes for applications in geotechnical engineering has been widely explored in order to overcome the limitation of traditional ground improvement techniques. Biomineralization via urea hydrolysis, referred to as Microbial or Enzymatic Induced Carbonate Precipitation (MICP/EICP), has been shown to increase soil strength by stimulating precipitation of calcium carbonate minerals, bonding soil particles and filling the pores. Microbial Induced Desaturation and Precipitation (MIDP) via denitrification has also been studied for its potential to stabilize soils through mineral precipitation, but also through production of biogas, which can mitigate earthquake induced liquefaction by desaturation of the soil. Empirical relationships have been established, which relate the amount of products of these biochemical processes to the engineering properties of treated soils. However, these engineering properties may vary significantly depending on the biomineral and biogas formation mechanism and distribution patterns at pore-scale. This research focused on the pore-scale characterization of biomineral and biogas formations in porous media.

The pore-scale characteristics of calcium carbonate precipitation via EICP and biogenic gas formation via MIDP were explored by visual observation in a transparent porous media using a microfluidic chip. For this purpose, an imaging system was designed and image processing algorithms were developed to analyze the experimental images and detect the nucleation and growth of precipitated minerals and formation and migration mechanisms of gas bubbles within the microfluidic chip. Statistical analysis was performed based on the processed images to assess the evolution of biomineral size distribution, the number of precipitated minerals and the porosity reduction in time. The resulting images from the biomineralization study were used in a numerical simulation to investigate the relation between the mineral distribution, porosity-permeability relationships and process efficiency. By comparing biogenic gas production with abiotic gas production experiments, it was found that the gas formation significantly affects the gas distribution and resulting degree of saturation. The experimental results and image analysis provide insight in the kinetics of the precipitation and gas formation processes and their resulting distribution and related engineering properties.
ContributorsKim, Daehyun (Author) / van Paassen, Leon (Thesis advisor) / Kavazanjian, Edward (Committee member) / Zapata, Claudia (Committee member) / Mahabadi, Nariman (Committee member) / Tao, Junliang (Committee member) / Jang, Jaewon (Committee member) / Arizona State University (Publisher)
Created2019
161243-Thumbnail Image.png
Description
Water is a vital resource, and its protection is a priority world-wide. One widespread threat to water quality is contamination by chlorinated solvents. These dry-cleaning and degreasing agents entered the watershed through spills and improper disposal and now are detected in 4% of U.S. aquifers and 4.5-18% of U.S.

Water is a vital resource, and its protection is a priority world-wide. One widespread threat to water quality is contamination by chlorinated solvents. These dry-cleaning and degreasing agents entered the watershed through spills and improper disposal and now are detected in 4% of U.S. aquifers and 4.5-18% of U.S. drinking water sources. The health effects of these contaminants can be severe, as they are associated with damage to the nervous, liver, kidney, and reproductive systems, developmental issues, and possibly cancer. Chlorinated solvents must be removed or transformed to improve water quality and protect human and environmental health. One remedy, bioaugmentation, the subsurface addition of microbial cultures able to transform contaminants, has been implemented successfully at hundreds of sites since the 1990s. Bioaugmentation uses the bacteria Dehalococcoides to transform chlorinated solvents with hydrogen, H2, as the electron donor. At advection limited sites, bioaugmentation can be combined with electrokinetics (EK-Bio) to enhance transport. However, challenges for successful bioremediation remain. In this work I addressed several knowledge gaps surrounding bioaugmentation and EK-Bio. I measured the H2 consuming capacity of soils, detailed the microbial metabolisms driving this demand, and evaluated how these finding relate to reductive dechlorination. I determined which reactions dominated at a contaminated site with mixed geochemistry treated with EK-Bio and compared it to traditional bioaugmentation. Lastly, I assessed the effect of EK-Bio on the microbial community at a field-scale site. Results showed the H2 consuming capacity of soils was greater than that predicted by initial measurements of inorganic electron acceptors and primarily driven by carbon-based microbial metabolisms. Other work demonstrated that, given the benefits of some carbon-based metabolisms to microbial reductive dechlorination, high levels of H2 consumption in soils are not necessarily indicative of hostile conditions for Dehalococcoides. Bench-scale experiments of EK-Bio under mixed geochemical conditions showed EK-Bio out-performed traditional bioaugmentation by facilitating biotic and abiotic transformations. Finally, results of microbial community analysis at a field-scale implementation of EK-Bio showed that while there were significant changes in alpha and beta diversity, the impact of EK-Bio on native microbial communities was minimal.
ContributorsAltizer, Megan Leigh (Author) / Torres, César I (Thesis advisor) / Krajmalnik-Brown, Rosa (Thesis advisor) / Rittmann, Bruce E (Committee member) / Kavazanjian, Edward (Committee member) / Delgado, Anca G (Committee member) / Arizona State University (Publisher)
Created2020
161919-Thumbnail Image.png
Description
Urease, an amidohydrolase, is an essential ingredient in the emerging engineering technique of biocementation. When free urease enzyme is used this carbonate precipitation process is often referred to as enzyme induced carbonate precipitation (EICP). To date, most engineering applications of EICP have used commercially available powdered urease. However, the high

Urease, an amidohydrolase, is an essential ingredient in the emerging engineering technique of biocementation. When free urease enzyme is used this carbonate precipitation process is often referred to as enzyme induced carbonate precipitation (EICP). To date, most engineering applications of EICP have used commercially available powdered urease. However, the high cost of commercially available urease is a major barrier to adoption of engineering applications of EICP in practice. The objective of this dissertation was to develop a simple and inexpensive enzyme production technique using agricultural resources. The specific objectives of this dissertation were (i) to develop a simple extraction process to obtain urease from common agricultural resources and identify a preferred agricultural resource for further study, (ii) to reduce the cost of enzyme production by eliminating the use of a buffer, centrifugation, and dehusking of the beans during the extraction process, (iii) investigate the stability of the extracted enzyme both in solution and after reduction to a powder by lyophilization (freeze-drying), and (iv) to study the kinetics of the extracted enzyme. The results presented in this dissertation confirmed that inexpensive crude extracts of urease from agricultural products, including jack beans, soybeans, and watermelon seeds, are effective at catalyzing urea hydrolysis for carbonate precipitation. Based upon unit yield, jack beans were identified as the preferred agricultural resource for urease extraction. Results also showed that the jack bean extract retained its activity even after replacing the buffer with tap water and eliminating acetone fractionation, centrifugation, and dehusking. It was also found that the lyophilized crude extract maintained its activity during storage for at least one year and more effectively than either the crude extract solution or rehydrated commercial urease. The kinetics of the extracted enzyme was studied to gain greater insight into the optimum concentration of urea in engineering applications of EICP. Results showed higher values for the half-saturation coefficient of the crude extract compared to the commercial enzymes. The results presented in this dissertation demonstrate the potential for a significant reduction in the cost of applying EICP in engineering practice by mass production of urease enzyme via a simple extraction process.
ContributorsJavadi, Neda (Author) / Kavazanjian, Edward (Thesis advisor) / Khodadadi Tirkolaei, Hamed (Committee member) / Hamadan, Naser (Committee member) / Delgado, Anca (Committee member) / Arizona State University (Publisher)
Created2021