Matching Items (15)
Filtering by

Clear all filters

152596-Thumbnail Image.png
Description
This thesis presents a probabilistic evaluation of multiple laterally loaded drilled pier foundation design approaches using extensive data from a geotechnical investigation for a high voltage electric transmission line. A series of Monte Carlo simulations provide insight about the computed level of reliability considering site standard penetration test blow count

This thesis presents a probabilistic evaluation of multiple laterally loaded drilled pier foundation design approaches using extensive data from a geotechnical investigation for a high voltage electric transmission line. A series of Monte Carlo simulations provide insight about the computed level of reliability considering site standard penetration test blow count value variability alone (i.e., assuming all other aspects of the design problem do not contribute error or bias). Evaluated methods include Eurocode 7 Geotechnical Design procedures, the Federal Highway Administration drilled shaft LRFD design method, the Electric Power Research Institute transmission foundation design procedure and a site specific variability based approach previously suggested by the author of this thesis and others. The analysis method is defined by three phases: a) Evaluate the spatial variability of an existing subsurface database. b) Derive theoretical foundation designs from the database in accordance with the various design methods identified. c) Conduct Monti Carlo Simulations to compute the reliability of the theoretical foundation designs. Over several decades, reliability-based foundation design (RBD) methods have been developed and implemented to varying degrees for buildings, bridges, electric systems and other structures. In recent years, an effort has been made by researchers, professional societies and other standard-developing organizations to publish design guidelines, manuals and standards concerning RBD for foundations. Most of these approaches rely on statistical methods for quantifying load and resistance probability distribution functions with defined reliability levels. However, each varies with regard to the influence of site-specific variability on resistance. An examination of the influence of site-specific variability is required to provide direction for incorporating the concept into practical RBD design methods. Recent surveys of transmission line engineers by the Electric Power Research Institute (EPRI) demonstrate RBD methods for the design of transmission line foundations have not been widely adopted. In the absence of a unifying design document with established reliability goals, transmission line foundations have historically performed very well, with relatively few failures. However, such a track record with no set reliability goals suggests, at least in some cases, a financial premium has likely been paid.
ContributorsHeim, Zackary (Author) / Houston, Sandra (Thesis advisor) / Witczak, Matthew (Committee member) / Kavazanjian, Edward (Committee member) / Zapata, Claudia (Committee member) / Arizona State University (Publisher)
Created2014
152724-Thumbnail Image.png
Description
ABSTRACT Enzyme-Induced Carbonate Precipitation (EICP) using a plant-derived form of the urease enzyme to induce the precipitation of calcium carbonate (CaCO3) shows promise as a method of stabilizing soil for the mitigation of fugitive dust. Fugitive dust is a significant problem in Arizona, particularly in Maricopa County. Maricopa County is

ABSTRACT Enzyme-Induced Carbonate Precipitation (EICP) using a plant-derived form of the urease enzyme to induce the precipitation of calcium carbonate (CaCO3) shows promise as a method of stabilizing soil for the mitigation of fugitive dust. Fugitive dust is a significant problem in Arizona, particularly in Maricopa County. Maricopa County is an EPA air quality non-attainment zone, due primarily to fugitive dust, which presents a significant health risk to local residents. Conventional methods for fugitive dust control, including the application of water, are either ineffective in arid climates, very expensive, or limited to short term stabilization. Due to these limitations, engineers are searching for new and more effective ways to stabilize the soil and reduce wind erosion. EICP employs urea hydrolysis, a process in which carbonate precipitation is catalyzed by the urease enzyme, a widely occurring protein found in many plants and microorganisms. Wind tunnel experiments were conducted in the ASU/NASA Planetary Wind Tunnel to evaluate the use of EICP as a means to stabilize soil against fugitive dust emission. Three different soils were tested, including a native Arizona silty-sand, a uniform fine to medium grained silica sand, and mine tailings from a mine in southern Arizona. The test soil was loosely placed in specimen container and the surface was sprayed with an aqueous solution containing urea, calcium chloride, and urease enzyme. After a short period of time to allow for CaCO3 precipitation, the specimens were tested in the wind tunnel. The completed tests show that EICP can increase the detachment velocity compared to bare or wetted soil and thus holds promise as a means of mitigating fugitive dust emissions.
ContributorsKnorr, Brian (Author) / Kavazanjian, Edward (Thesis advisor) / Houston, Sandra (Committee member) / Zapata, Claudia (Committee member) / Arizona State University (Publisher)
Created2014
150169-Thumbnail Image.png
Description
A method for evaluating the integrity of geosynthetic elements of a waste containment system subject to seismic loading is developed using a large strain finite difference numerical computer program. The method accounts for the effect of interaction between the geosynthetic elements and the overlying waste on seismic response and allows

A method for evaluating the integrity of geosynthetic elements of a waste containment system subject to seismic loading is developed using a large strain finite difference numerical computer program. The method accounts for the effect of interaction between the geosynthetic elements and the overlying waste on seismic response and allows for explicit calculation of forces and strains in the geosynthetic elements. Based upon comparison of numerical results to experimental data, an elastic-perfectly plastic interface model is demonstrated to adequately reproduce the cyclic behavior of typical geomembrane-geotextile and geomembrane-geomembrane interfaces provided the appropriate interface properties are used. New constitutive models are developed for the in-plane cyclic shear behavior of textured geomembrane/geosynthetic clay liner (GMX/GCL) interfaces and GCLs. The GMX/GCL model is an empirical model and the GCL model is a kinematic hardening, isotropic softening multi yield surface plasticity model. Both new models allows for degradation in the cyclic shear resistance from a peak to a large displacement shear strength. The ability of the finite difference model to predict forces and strains in a geosynthetic element modeled as a beam element with zero moment of inertia sandwiched between two interface elements is demonstrated using hypothetical models of a heap leach pad and two typical landfill configurations. The numerical model is then used to conduct back analyses of the performance of two lined municipal solid waste (MSW) landfills subjected to strong ground motions in the Northridge earthquake. The modulus reduction "backbone curve" employed with the Masing criterion and 2% Rayleigh damping to model the cyclic behavior of MSW was established by back-analysis of the response of the Operating Industries Inc. landfill to five different earthquakes, three small magnitude nearby events and two larger magnitude distant events. The numerical back analysis was able to predict the tears observed in the Chiquita Canyon Landfill liner system after the earthquake if strain concentrations due to seams and scratches in the geomembrane are taken into account. The apparent good performance of the Lopez Canyon landfill geomembrane and the observed tension in the overlying geotextile after the Northridge event was also successfully predicted using the numerical model.
ContributorsArab, Mohamed G (Author) / Kavazanjian, Edward (Thesis advisor) / Zapata, Claudia (Committee member) / Houston, Sandra (Committee member) / Arizona State University (Publisher)
Created2011
150127-Thumbnail Image.png
Description
This dissertation describes development of a procedure for obtaining high quality, optical grade sand coupons from frozen sand specimens of Ottawa 20/30 sand for image processing and analysis to quantify soil structure along with a methodology for quantifying the microstructure from the images. A technique for thawing and stabilizing

This dissertation describes development of a procedure for obtaining high quality, optical grade sand coupons from frozen sand specimens of Ottawa 20/30 sand for image processing and analysis to quantify soil structure along with a methodology for quantifying the microstructure from the images. A technique for thawing and stabilizing frozen core samples was developed using optical grade Buehler® Epo-Tek® epoxy resin, a modified triaxial cell, a vacuum/reservoir chamber, a desiccator, and a moisture gauge. The uniform epoxy resin impregnation required proper drying of the soil specimen, application of appropriate confining pressure and vacuum levels, and epoxy mixing, de-airing and curing. The resulting stabilized sand specimen was sectioned into 10 mm thick coupons that were planed, ground, and polished with progressively finer diamond abrasive grit levels using the modified Allied HTP Inc. polishing method so that the soil structure could be accurately quantified using images obtained with the use of an optical microscopy technique. Illumination via Bright Field Microscopy was used to capture the images for subsequent image processing and sand microstructure analysis. The quality of resulting images and the validity of the subsequent image morphology analysis hinged largely on employment of a polishing and grinding technique that resulted in a flat, scratch free, reflective coupon surface characterized by minimal microstructure relief and good contrast between the sand particles and the surrounding epoxy resin. Subsequent image processing involved conversion of the color images first to gray scale images and then to binary images with the use of contrast and image adjustments, removal of noise and image artifacts, image filtering, and image segmentation. Mathematical morphology algorithms were used on the resulting binary images to further enhance image quality. The binary images were then used to calculate soil structure parameters that included particle roundness and sphericity, particle orientation variability represented by rose diagrams, statistics on the local void ratio variability as a function of the sample size, and the local void ratio distribution histograms using Oda's method and Voronoi tessellation method, including the skewness, kurtosis, and entropy of a gamma cumulative probability distribution fit to the local void ratio distribution.
ContributorsCzupak, Zbigniew David (Author) / Kavazanjian, Edward (Thesis advisor) / Zapata, Claudia (Committee member) / Houston, Sandra (Committee member) / Arizona State University (Publisher)
Created2011
150101-Thumbnail Image.png
Description
As a prelude to a study on the post-liquefaction properties and structure of soil, an investigation of ground freezing as an undisturbed sampling technique was conducted to investigate the ability of this sampling technique to preserve soil structure and properties. Freezing the ground is widely regarded as an appropriate technique

As a prelude to a study on the post-liquefaction properties and structure of soil, an investigation of ground freezing as an undisturbed sampling technique was conducted to investigate the ability of this sampling technique to preserve soil structure and properties. Freezing the ground is widely regarded as an appropriate technique to recover undisturbed samples of saturated cohesionless soil for laboratory testing, despite the fact that water increases in volume when frozen. The explanation generally given for the preservation of soil structure using the freezing technique was that, as long as the freezing front advanced uni-directionally, the expanding pore water is expelled ahead of the freezing front as the front advances. However, a literature review on the transition of water to ice shows that the volume of ice expands approximately nine percent after freezing, bringing into question the hypothesized mechanism and the ability of a frozen and then thawed specimen to retain the properties and structure of the soil in situ. Bench-top models were created by pluviation of sand. The soil in the model was then saturated and subsequently frozen. Freezing was accomplished using a pan filled with alcohol and dry ice placed on the surface of the sand layer to induce a unidirectional freezing front in the sample container. Coring was used to recover frozen samples from model containers. Recovered cores were then placed in a triaxial cell, thawed, and subjected to consolidated undrained loading. The stress-strain-strength behavior of the thawed cores was compared to the behavior of specimens created in a split mold by pluviation and then saturated and sheared without freezing and thawing. The laboratory testing provide insight to the impact of freezing and thawing on the properties of cohesionless soil.
ContributorsKatapa, Kanyembo (Author) / Kavazanjian, Edward (Thesis advisor) / Houston, Sandra (Committee member) / Zapata, Claudia (Committee member) / Arizona State University (Publisher)
Created2011
149831-Thumbnail Image.png
Description
The focus of this study is statistical characterization of the significant duration of strong ground motion time histories. The significant duration is defined as the time needed to build up between five and seventy five (SD575) and ninety five percent (SD595) of the energy of a strong motion record.

The focus of this study is statistical characterization of the significant duration of strong ground motion time histories. The significant duration is defined as the time needed to build up between five and seventy five (SD575) and ninety five percent (SD595) of the energy of a strong motion record. Energy is measured as the integral of the square of the acceleration time history and can be used to capture the potential destructiveness of an earthquake. Correlations of the geometric means of the two significant duration measures (SD575 and SD595) with source, path, and near surface site parameters have been investigated using the geometric mean of 2,690 pairs of recorded horizontal strong ground motion data from 129 earthquakes in active plate margins. These time histories correspond to moment magnitudes between 4.8 and 7.9, site to source distances up to 200 km, and near surface shear wave velocity ranging from 120 to 2250 m/s. Empirical relationships have been developed based upon the simple functional forms, and observed correlations. The coefficients of the independent variables in these empirical relationships have been determined through nonlinear regression analysis using a random effects model. It is found that significant duration measures correlate well with magnitude, site to source distance, and near surface shear wave velocity. The influence of the depth to top of rupture, depth to the shear wave velocity of 1000 m/s and the style of faulting were not found to be statistically significant. Comparison of the empirical relationship developed in this study with existing empirical relationships for the significant duration shows good agreement at intermediate magnitudes (M 6.5). However, at larger and smaller magnitude, the differences between the correlations developed in this study and those from previous studies are significant.
ContributorsGhanat, Simon T (Author) / Kavazanjian, Jr., Edward (Thesis advisor) / Houston, Sandra (Committee member) / Arrowsmith, Ramon (Committee member) / Arizona State University (Publisher)
Created2011
156066-Thumbnail Image.png
Description
Design and mitigation of infrastructure on expansive soils requires an understanding of unsaturated soil mechanics and consideration of two stress variables (net normal stress and matric suction). Although numerous breakthroughs have allowed geotechnical engineers to study expansive soil response to varying suction-based stress scenarios (i.e. partial wetting), such studies

Design and mitigation of infrastructure on expansive soils requires an understanding of unsaturated soil mechanics and consideration of two stress variables (net normal stress and matric suction). Although numerous breakthroughs have allowed geotechnical engineers to study expansive soil response to varying suction-based stress scenarios (i.e. partial wetting), such studies are not practical on typical projects due to the difficulties and duration needed for equilibration associated with the necessary laboratory testing. The current practice encompasses saturated “conventional” soil mechanics testing, with the implementation of numerous empirical correlations and approximations to obtain an estimate of true field response. However, it has been observed that full wetting rarely occurs in the field, leading to an over-conservatism within a given design when partial wetting conditions are ignored. Many researchers have sought to improve ways of estimation of soil heave/shrinkage through intense studies of the suction-based response of reconstituted clay soils. However, the natural behavior of an undisturbed clay soil sample tends to differ significantly from a remolded sample of the same material.

In this study, laboratory techniques for the determination of soil suction were evaluated, a methodology for determination of the in-situ matric suction of a soil specimen was explored, and the mechanical response to changes in matric suction of natural clay specimens were measured. Suction-controlled laboratory oedometer devices were used to impose partial wetting conditions, similar to those experienced in a natural setting. The undisturbed natural soils tested in the study were obtained from Denver, CO and San Antonio, TX.

Key differences between the soil water characteristic curves of the undisturbed specimen test compared to the conventional reconstituted specimen test are highlighted. The Perko et al. (2000) and the PTI (2008) methods for estimating the relationship between volume and changes in matric suction (i.e. suction compression index) were evaluated by comparison to the directly measured values. Lastly, the directly measured partial wetting swell strain was compared to the fully saturated, one-dimensional, oedometer test (ASTM D4546) and the Surrogate Path Method (Singhal, 2010) to evaluate the estimation of partial wetting heave.
ContributorsOlaiz, Austin Hunter (Author) / Houston, Sandra (Thesis advisor) / Zapata, Claudia (Committee member) / Kavazanjian, Edward (Committee member) / Arizona State University (Publisher)
Created2017
134138-Thumbnail Image.png
Description
This thesis was prepared by Tyler Maynard and Hayley Monroe, who are students at Arizona State University studying to complete their B.S.E.s in Civil Engineering and Construction Engineering, respectively. Both students are members of Barrett, the Honors College, at Arizona State University, and have prepared the following document for the

This thesis was prepared by Tyler Maynard and Hayley Monroe, who are students at Arizona State University studying to complete their B.S.E.s in Civil Engineering and Construction Engineering, respectively. Both students are members of Barrett, the Honors College, at Arizona State University, and have prepared the following document for the purpose of completing their undergraduate honors thesis. The early sections of this document comprise a general, introductory overview of earthquakes and liquefaction as a phenomenon resulting from earthquakes. In the latter sections, this document analyzes the relationship between the furthest hypocentral distance to observed liquefaction and the earthquake magnitude published in 2006 by Wang, Wong, Dreger, and Manga. This research was conducted to gain a greater understanding of the factors influencing liquefaction and to compare the existing relationship between the maximum distance for liquefaction and earthquake magnitude to updated earthquake data compiled for the purpose of this report. As part of this research, 38 different earthquake events from the Geotechnical Extreme Events Reconnaissance (GEER) Association with liquefaction data were examined. Information regarding earthquake depth, distance to the furthest liquefaction event (epicentral and hypocentral), and earthquake magnitude (Mw) from recent earthquake events (1989 to 2016) was compared to the previously established relationship of liquefaction occurrence distance to moment magnitude. The purpose of this comparison was to determine if recent events still comply with the established relationship. From this comparison, it was determined that the established relationship still generally holds true for the large magnitude earthquakes (magnitude 7.5 or above) that were considered herein (with only 2.6% falling above the furthest expected liquefaction distance). However, this relationship may be too conservative for recent, low magnitude earthquake events; those events examined below magnitude 6.3 did not approach established range of furthest expected liquefaction distance. The overestimation of furthest hypocentral distance to liquefaction at low magnitudes suggest the empirical relationship may need to be adjusted to more accurately capture recent events, as reported by GEER.
ContributorsMonroe, Hayley (Co-author) / Maynard, Tyler (Co-author) / Kavazanjian, Edward (Thesis director) / Houston, Sandra (Committee member) / Civil, Environmental and Sustainable Engineering Program (Contributor) / Construction Engineering (Contributor) / Barrett, The Honors College (Contributor)
Created2017-12
154635-Thumbnail Image.png
Description
The dissimilatory reduction of nitrate, or denitrification, offers the potential of a sustainable, cost effective method for the non-disruptive mitigation of earthquake-induced soil liquefaction. Worldwide, trillions of dollars of infrastructure are at risk for liquefaction damage in earthquake prone regions. However, most techniques for remediating liquefiable soils are

The dissimilatory reduction of nitrate, or denitrification, offers the potential of a sustainable, cost effective method for the non-disruptive mitigation of earthquake-induced soil liquefaction. Worldwide, trillions of dollars of infrastructure are at risk for liquefaction damage in earthquake prone regions. However, most techniques for remediating liquefiable soils are either not applicable to sites near existing infrastructure, or are prohibitively expensive. Recently, laboratory studies have shown the potential for biogeotechnical soil improvement techniques such as microbially induced carbonate precipitation (MICP) to mitigate liquefaction potential in a non-disruptive manner. Multiple microbial processes have been identified for MICP, but only two have been extensively studied. Ureolysis, the most commonly studied process for MICP, has been shown to quickly and efficiently induce carbonate precipitation on particle surfaces and at particle contacts to improve the stiffness, strength, and dilatant behavior of liquefiable soils. However, ureolysis also produces copious amounts of ammonium, a potentially toxic byproduct. The second process studied for MICP, denitrification, has been shown to precipitate carbonate, and hence improve soil properties, much more slowly than ureolysis. However, the byproducts of denitrification, nitrogen and carbon dioxide gas, are non-toxic, and present the added benefit of rapidly desaturating the treated soil. Small amounts of desaturation have been shown to increase the cyclic resistance, and hence the liquefaction resistance, of liquefiable soils. So, denitrification offers the potential to mitigate liquefaction as a two-stage process, with desaturation providing short term mitigation, and MICP providing long term liquefaction resistance. This study presents the results of soil testing, stoichiometric modeling, and microbial ecology characterization to better characterize the potential use of denitrification as a two-stage process for liquefaction mitigation.
ContributorsO'Donnell, Sean (Author) / Kavazanjian, Edward (Thesis advisor) / Rittmann, Bruce (Committee member) / Houston, Sandra (Committee member) / Arizona State University (Publisher)
Created2016
155853-Thumbnail Image.png
Description
Recent research efforts have been directed to improve the quality of pavement design procedures by considering the transient nature of soil properties due to environmental and aging effects on pavement performance. The main purpose of this research study was to investigate the existence of subgrade soil moisture changes that may

Recent research efforts have been directed to improve the quality of pavement design procedures by considering the transient nature of soil properties due to environmental and aging effects on pavement performance. The main purpose of this research study was to investigate the existence of subgrade soil moisture changes that may have arisen due to thermal and hydraulic gradients at the Atlantic City NAPTF and to evaluate their effect on the material stiffness and the California Bearing Ratio (CBR) strength parameter of the clay subgrade materials. Laboratory data showed that at the same water content, matric suction decreases with increasing temperature; and at the same suction, hydraulic conductivity increases with increasing temperature. Models developed, together with moisture/temperature data collected from 30 sensors installed in the test facility, yielded a maximum variation of suction in field of 155 psi and changes in hydraulic conductivity from 2.9E-9 m/s at 100% saturation to 8.1E-12 at 93% saturation. The maximum variation in temperature was found to be 20.8oC at the shallower depth and decreased with depth; while a maximum variation in moisture content was found to be 3.7% for Dupont clay and 4.4% for County clay. Models developed that predicts CBR as a function of dry density and moisture content yielded a maximum variation of CBR of 2.4 for Dupont clay and 2.9 for County clay. Additionally, models were developed relating the temperature with the bulk stress and octahedral stress applied on the subgrade for dual gear, dual tandem and triple tandem gear types for different tire loads. It was found that as the temperature increases the stresses increase. A Modified Cary and Zapata model was used for predicting the resilient modulus(Mr) of the subgrade. Using the models developed and the temperature/moisture changes observed in the field, the variation of suction, bulk and octahedral stresses were estimated, along with the resilient modulus for three different gear types. Results indicated that changes in Mr as large as 9 ksi occur in the soils studied due to the combined effect of external loads and environmental condition changes.
ContributorsThirthar Palanivelu, Pugazhvel (Author) / Zapata, Claudia E (Thesis advisor) / Kavazanjian, Edward (Committee member) / Houston, Sandra (Committee member) / Underwood, Shane (Committee member) / Arizona State University (Publisher)
Created2017