Matching Items (23)
Filtering by

Clear all filters

154684-Thumbnail Image.png
Description
Peri-urbanization is a process in which previously rural areas on the outskirts of established cities become more urban in character. This process is of great significance in China, because peri-urbanization is often manufacturing and Foreign Direct Investment (FDI) driven. After witnessing the dramatic development of the Eastern Coastal Region from

Peri-urbanization is a process in which previously rural areas on the outskirts of established cities become more urban in character. This process is of great significance in China, because peri-urbanization is often manufacturing and Foreign Direct Investment (FDI) driven. After witnessing the dramatic development of the Eastern Coastal Region from the mid-1980s, China recently changed its regional development focus to interior regions to pursue more spatial equity within the nation. Wuhan, as the most populous city in central China, is experiencing significant peri-urbanization. The thesis focuses on Dongxihu District, a representative peri-urban area in Wuhan Municipality.

To explore peri-urbanization in Dongxihu, this study first documents the metrics of ongoing peri-urbanization in the District from land use, economic, demographic and institutional perspectives. Causality is explored by relating peri-urban outcomes to drivers within the framework of research questions, namely: (i) What is driving peri-urban change in Dongxihu? (ii) Which drivers of peri-urbanization in the District are most important? (iii) How can Dong Xi Hu's peri-urbanization process and outcomes best be characterized? and (iv) What policy implications can be drawn from Dong Xi Hu's peri-urbanization experience?

The primary conclusion is that Dongxihu's peri-urbanization is primarily manufacturing driven, resembling previous first generation peri-urbanization on the coast more than the more diverse peri-urban outcomes now emerging in wealthy coastal metropolitan areas, e.g., Shanghai.
ContributorsLi, Jianyi, M.U.E.P (Author) / Webster, Douglas R (Thesis advisor) / Pfeiffer, Deirdre A (Thesis advisor) / Cai, Jianming (Committee member) / Arizona State University (Publisher)
Created2016
155192-Thumbnail Image.png
Description
Context – Urbanization can have negative effects on bat habitat use through the loss and isolation of habitat even for volant bats. Yet, how bats respond to the changing landscape composition and configuration of urban environments remains poorly understood.

Objective – This study examines the relationship between bat habitat

Context – Urbanization can have negative effects on bat habitat use through the loss and isolation of habitat even for volant bats. Yet, how bats respond to the changing landscape composition and configuration of urban environments remains poorly understood.

Objective – This study examines the relationship between bat habitat use and landscape pattern across multiple scales in the Phoenix metropolitan region. My research explores how landscape composition and configuration affects bat activity, foraging activity, and species richness (response variables), and the distinct habitats that they use.

Methods – I used a multi-scale landscape approach and acoustic monitoring data to create predictive models that identified the key predictor variables across multiple scales within the study area. I selected three scales with the intent of capturing the landscape, home range, and site scales, which may all be relevant for understanding bat habitat use.

Results – Overall, class-level metrics and configuration metrics best explained bat habitat use for bat species associated with this urban setting. The extent and extensiveness of water (corresponding to small water bodies and watercourses) were the most important predictor variables across all response variables. Bat activity was predicted to be high in native vegetation remnants, and low in native vegetation at the city periphery. Foraging activity was predicted to be high in fine-scale land cover heterogeneity. Species richness was predicted to be high in golf courses, and low in commercial areas. Bat habitat use was affected by urban landscape pattern mainly at the landscape and site scale.

Conclusions – My results suggested in hot arid urban landscapes water is a limiting factor for bats, even in urban landscapes where the availability of water may be greater than in outlying native desert habitat. Golf courses had the highest species richness, and included the detection of the uncommon pocketed free-tailed bat (Nyctinomops femorosaccus). Water cover types had the second highest species richness. Golf courses may serve as important stop-overs or refuges for rare or elusive bats. Urban waterways and golf courses are novel urban cover types that can serve as compliments to urban preserves, and other green spaces for bat conservation.
ContributorsBazelman, Tracy C (Author) / Wu, Jianguo (Thesis advisor) / Chambers, Carol L. (Thesis advisor) / Smith, Andrew T. (Committee member) / Arizona State University (Publisher)
Created2016
149442-Thumbnail Image.png
Description

Urban ecosystems cover less than 3% of the Earth's land surface, yet more than half of the human population lives in urban areas. The process of urbanization stresses biodiversity and other ecosystem functions within and far beyond the city. To understand the mechanisms underlying observed changes in biodiversity patterns, several

Urban ecosystems cover less than 3% of the Earth's land surface, yet more than half of the human population lives in urban areas. The process of urbanization stresses biodiversity and other ecosystem functions within and far beyond the city. To understand the mechanisms underlying observed changes in biodiversity patterns, several observational and experimental studies were performed in the metropolitan area of Phoenix, Arizona, and the surrounding Sonoran Desert. The first study was comprised of seven years of arthropod monitoring using pitfall traps in common urban land-use types. This study revealed differences in community structure, diversity and abundance over time and between urban and wildland habitats. Urban habitats with high productivity had higher abundances of arthropods, but lower diversity compared to wildland habitats. Arthropod abundance in less-productive urban habitats was positively correlated with precipitation, but abundance in high-productivity urban habitats was completely decoupled from annual fluctuations in precipitation. This study showed the buffering capacity and the habitat heterogeneity of urban areas. To test the mechanisms controlling community diversity and structure in urban areas, a major field experiment was initiated. Productivity of the native shrub Encelia farinosa and bird predation of associated arthropods were manipulated to test whether bottom-up or top-down forces were more important in urban habitats compared to wildland habitats. Abundance, richness and similarity were monitored, revealing clear differences between urban and wildland habitats. An unusually cold and dry first season had a negative effect on plant growth and arthropod abundance. Plants in urban habitats were relatively unaffected by the low temperature. An increase in arthropod abundance with water availability indicated bottom-up forces in wildland habitats, whereas results from bird exclusions suggested that bird predation may not be as prominent in cities as previously thought. In contrast to the pitfall study, arthropod abundance was lower in urban habitats. A second field experiment testing the sheltering effect of urban structures demonstrated that reduced wind speed is an important factor facilitating plant growth in urban areas. A mathematical model incorporating wind, water and temperature demonstrated that urban habitats may be more robust than wildland habitats, supporting the empirical results.

ContributorsBang, Christofer (Author) / Faeth, Stanley H. (Thesis advisor) / Sabo, John L. (Thesis advisor) / Grimm, Nancy (Committee member) / Anderies, J. Marty (Committee member) / Warren, Paige S. (Committee member) / Arizona State University (Publisher)
Created2010
141375-Thumbnail Image.png
Description

Urban Heat Island (UHI) is considered as one of the major problems in the 21st century posed to human beings as a result of urbanization and industrialization of human civilization. The large amount of heat generated from urban structures, as they consume and re-radiate solar radiations, and from the anthropogenic

Urban Heat Island (UHI) is considered as one of the major problems in the 21st century posed to human beings as a result of urbanization and industrialization of human civilization. The large amount of heat generated from urban structures, as they consume and re-radiate solar radiations, and from the anthropogenic heat sources are the main causes of UHI. The two heat sources increase the temperatures of an urban area as compared to its surroundings, which is known as Urban Heat Island Intensity (UHII). The problem is even worse in cities or metropolises with large population and extensive economic activities. The estimated three billion people living in the urban areas in the world are directly exposed to the problem, which will be increased significantly in the near future. Due to the severity of the problem, vast research effort has been dedicated and a wide range of literature is available for the subject. The literature available in this area includes the latest research approaches, concepts, methodologies, latest investigation tools and mitigation measures. This study was carried out to review and summarize this research area through an investigation of the most important feature of UHI. It was concluded that the heat re-radiated by the urban structures plays the most important role which should be investigated in details to study urban heating especially the UHI. It was also concluded that the future research should be focused on design and planning parameters for reducing the effects of urban heat island and ultimately living in a better environment.

ContributorsRizwan, Ahmed Memon (Author) / Dennis, Leung Y.C. (Author) / Liu, Chunho (Author)
Created2007-09-27
168412-Thumbnail Image.png
Description
Urbanization is a primary driver of ecological change and occurs across a gradient from low- to high- density development. Wildlife species can exhibit different responses to urbanization, with some species being more sensitive than others. Further, wildlife communities can exhibit varying patterns of species richness across the gradient of urbanization,

Urbanization is a primary driver of ecological change and occurs across a gradient from low- to high- density development. Wildlife species can exhibit different responses to urbanization, with some species being more sensitive than others. Further, wildlife communities can exhibit varying patterns of species richness across the gradient of urbanization, where species richness can either decrease linearly or peak at intermediate levels of urbanization, consistent with the intermediate disturbance hypothesis (IDH). For chapter one, the objective was to evaluate the response of bats to urbanization across seasons. It was predicted that bat species would exhibit different responses to urbanization and that bats would increase use of urbanized areas in the summer season, where food and water resources were assumed to be greater. For chapter two, the objective was to evaluate species richness of bats across the gradient of urbanization in the summer season. Species richness of bats was predicted to either decrease linearly or peak at moderate levels of urban intensity. To test these hypotheses, 50 sites across the gradient of urbanization were sampled during four seasons using stationary acoustic bat monitors. Fourteen bat species were identified during 1000 nightly occasions. Consistent with chapter one predictions, bat species exhibited different responses to urbanization, with most bats being sensitive to urbanization. Counter to predictions, most bats did not appear to shift their response to urbanization across seasons. However, two bats (i.e., big brown bat and Yuma myotis) exhibited higher use of urbanized areas in the summer compared to other seasons. Consistent with chapter two predictions, species richness of bats decreased with increasing urban intensity. Results from this study demonstrate that most bats in the community were sensitive to urbanization, which is potentially related to species traits and has important conservation implications. First, it is likely important to maintain high-quality undeveloped habitat with low anthropogenic disturbance in wildland areas for species that are sensitive to urbanization and to maximize species richness. In addition, for bats that are tolerant of urbanization and to increase species richness in urbanized areas, it is likely important to preserve resources in urbanized areas and increase landscape connectivity.
ContributorsDwyer, Jessie (Author) / Lewis, Jesse S (Thesis advisor) / Moore, Marianne S (Committee member) / Saul, Steven E (Committee member) / Arizona State University (Publisher)
Created2021
168461-Thumbnail Image.png
Description
The built environment increases radiant heat exchange in urban areas by several degrees hotter compared to non-urban areas. Research has investigated how urbanization and heat affect human health; but there is scant literature on the effects of urban heat on wildlife. Animal body condition can be used to assess overall

The built environment increases radiant heat exchange in urban areas by several degrees hotter compared to non-urban areas. Research has investigated how urbanization and heat affect human health; but there is scant literature on the effects of urban heat on wildlife. Animal body condition can be used to assess overall health. This parameter estimates the storage of energy-rich fat, which is important for growth, survival, and reproduction. The purpose of my research was to examine the Urban Heat Island effect on wild rodents across urban field sites spanning three strata of land surface temperature. Site level surface temperatures were measured using temperature data loggers and I captured 116 adult pocket mice (Chaetodipus spp. and Perognathus spp.) and Merriam’s kangaroo rats (Dipodomys merriami) to measure their body condition using accurate and noninvasive quantitative magnetic resonance. I used baited Sherman live traps from mid-May to early September during 2019 and 2020 in mountainous urban parks and open spaces over two summers. Rodents were captured at seven sites near the Phoenix metropolitan area; an ideal area for examining the effect of extreme heat experienced by urban wildlife. Results supported the prediction that rodent body condition was greatest in the cooler temperature stratas compared to the hottest temperature strata. I related rodent body condition to environmental predictors to dispute to environmental predictors to dispute alternative hypotheses; such as vegetation cover and degree of urbanization. Results based on measures of body fat and environmental predictors show pocket mice have more fat where vegetation is higher, nighttime temperatures are lower, surface temperatures are lower, and urbanization is greater. Kangaroo rats have more fat where surface temperature is lower. My results contribute to understanding the negative effects of extreme heat on body condition and generalized health experienced by urban wildlife because of the built environment. This research shows a need to investigate further impacts of urban heat on wildlife. Management suggestions for urban parks and open spaces include increasing vegetation cover, reducing impervious surface, and building with materials that reduce radiant heat.
ContributorsAllen, Brittany D'Ann (Author) / Bateman, Heather L (Thesis advisor) / Moore, Marianne S (Committee member) / Hondula, David M (Committee member) / Arizona State University (Publisher)
Created2021
189248-Thumbnail Image.png
Description
With a growing majority of humans living within cities and towns, urbanization is one of the most persistent drivers of change in global land use and challenges to sustainability and biodiversity conservation. The development of cities and towns can substantially shape local and regional environments in which wildlife communities persist.

With a growing majority of humans living within cities and towns, urbanization is one of the most persistent drivers of change in global land use and challenges to sustainability and biodiversity conservation. The development of cities and towns can substantially shape local and regional environments in which wildlife communities persist. Although urbanization can negatively affect wildlife communities – through processes such as habitat fragmentation and non-native species introduction – cities can also provide resources to wildlife, such as through food, water, and space, creating potential opportunities for conservation. However, managing wildlife communities persisting in urbanizing landscapes requires better understanding of how urbanized landscapes influence the ability of wildlife to coexist with one another and with people at local and regional scales. In this dissertation, I addressed these research needs by evaluating the environmental and human factors driving dynamic wildlife community distributions and people’s attitudes towards wildlife. In my first two chapters,I used wildlife camera data collected from across the Phoenix Metropolitan Area, AZ to examine seasonal patterns of wildlife space use, species richness, and interspecific interactions across levels of urbanization with varying landscape characteristics, including plant productivity and spatial land use heterogeneity. Here I found that urbanization was a primary driver of wildlife community characteristics within the region, but that seasonal resource availability and landscape heterogeneity could have mediating influences that require further exploration. In my third chapter, I partnered with wildlife researchers across North America to examine how relationships between urbanization and community composition vary among cities with distinct social-ecological characteristics, finding that effects of local urbanization were more negative in warmer, less vegetated, and more urbanized cities. In my fourth and final chapter, I explored the potential for human-wildlife coexistence by examining how various ideological, environmental, and sociodemographic factors influenced Phoenix area residents’ level of comfort living near different wildlife groups. Although I found that residents’ attitudes were primarily shaped by their relatively static wildlife values, comfort living near wildlife also depended on the characteristics of the neighboring environment, of the residents, and of the wildlife involved, indicating the potential for facilitating conditions for human-wildlife coexistence. Altogether, the findings of this dissertation suggest that the management of wildlife and their interactions with people within cities would benefit from more proactive and holistic consideration of the interacting environmental, wildlife, and human characteristics that influence the persistence of biodiversity within an increasingly urbanized world.
ContributorsHaight, Jeffrey Douglas (Author) / Hall, Sharon J (Thesis advisor) / Lewis, Jesse S (Thesis advisor) / Larson, Kelli L (Committee member) / Wu, Jianguo (Committee member) / Arizona State University (Publisher)
Created2023
154090-Thumbnail Image.png
Description
Despite widespread acknowledgement of the need for transformation towards sustainability, the majority of cities appear stuck in incremental change instead of far-reaching, radical change. While there are numerous obstacles to transformational change, one critical aspect is the process of selecting impactful sustainability programs. The unique and complex nature of sustainability

Despite widespread acknowledgement of the need for transformation towards sustainability, the majority of cities appear stuck in incremental change instead of far-reaching, radical change. While there are numerous obstacles to transformational change, one critical aspect is the process of selecting impactful sustainability programs. The unique and complex nature of sustainability suggests a different approach is needed to program selection than is normal. But, to what extent are cities adapting selection processes in response to sustainability and what effect does this have on sustainable urban transformation? Could there be a more effective process to select programs with greater transformational potential? This dissertation investigates these questions using case studies and action research to add to the general knowledge of urban sustainability program selection and to develop practical knowledge (solutions) for more effective sustainable urban transformation.

The dissertation consists of three studies. Study 1 uses a case study approach to investigate existing sustainability program selection processes in three cities: Avondale, USA; Almere, the Netherlands; and Freiburg, Germany. These cities all express commitment to sustainability but have varying degrees of sustainable development experience, accomplishment, and recognition. Study 2 develops a program selection framework for urban sustainable transformation drawing extensively from the literature on sustainability assessment and related fields, and on participatory input from municipal practitioners in Avondale and Almere. Study 3 assesses the usefulness of the framework in a dual pilot study. Participatory workshops were conducted in which the framework was applied to real-world situations: (i) with the city’s sustainability working group in Avondale; and (ii) with a local energy cooperative in Almere.

Overall, findings suggest cities are not significantly adapting program selection processes in response to the challenges of sustainability. Processes are often haphazard, opportunistic, driven elite actors, and weakly aligned with sustainability principles and goals, which results in selected programs being more incremental than transformational. The proposed framework appears effective at opening up the range of program options considered, stimulating constructive deliberation among participants, and promoting higher order learning. The framework has potential for nudging program selection towards transformational outcomes and more deeply embedding sustainability within institutional culture.
ContributorsForrest, Nigel (Author) / Wiek, Arnim (Thesis advisor) / Melnick, Rob (Committee member) / Schugurensky, Daniel, 1958- (Committee member) / Arizona State University (Publisher)
Created2015
154025-Thumbnail Image.png
Description
This study uses the Weather Research and Forecasting (WRF) model to simulate and predict the changes in local climate attributed to the urbanization for five desert cities. The simulations are performed in the fashion of climate downscaling, constrained by the surface boundary conditions generated from high resolution land-use maps. For

This study uses the Weather Research and Forecasting (WRF) model to simulate and predict the changes in local climate attributed to the urbanization for five desert cities. The simulations are performed in the fashion of climate downscaling, constrained by the surface boundary conditions generated from high resolution land-use maps. For each city, the land-use maps of 1985 and 2010 from Landsat satellite observation, and a projected land-use map for 2030, are used to represent the past, present, and future. An additional set of simulations for Las Vegas, the largest of the five cities, uses the NLCD 1992 and 2006 land-use maps and an idealized historical land-use map with no urban coverage for 1900.

The study finds that urbanization in Las Vegas produces a classic urban heat island (UHI) at night but a minor cooling during the day. A further analysis of the surface energy balance shows that the decrease in surface Albedo and increase effective emissivity play an important role in shaping the local climate change over urban areas. The emerging urban structures slow down the diurnal wind circulation over the city due to an increased effective surface roughness. This leads to a secondary modification of temperature due to the interaction between the mechanical and thermodynamic effects of urbanization.

The simulations for the five desert cities for 1985 and 2010 further confirm a common pattern of the climatic effect of urbanization with significant nighttime warming and moderate daytime cooling. This effect is confined to the urban area and is not sensitive to the size of the city or the detail of land cover in the surrounding areas. The pattern of nighttime warming and daytime cooling remains robust in the simulations for the future climate of the five cities using the projected 2030 land-use maps. Inter-city differences among the five urban areas are discussed.
ContributorsKamal, Samy (Author) / Huang, Huei-Ping (Thesis advisor) / Anderson, James (Thesis advisor) / Herrmann, Marcus (Committee member) / Calhoun, Ronald (Committee member) / Myint, Soe (Committee member) / Arizona State University (Publisher)
Created2015
158438-Thumbnail Image.png
Description
The science community has made efforts for over a half century to address sustainable development, which gave birth to sustainability science at the turn of the twenty-first century. Along with the development of sustainability science during the past two decades, a landscape sustainability science (LSS) perspective has been emerging.

The science community has made efforts for over a half century to address sustainable development, which gave birth to sustainability science at the turn of the twenty-first century. Along with the development of sustainability science during the past two decades, a landscape sustainability science (LSS) perspective has been emerging. As interests in LSS continue to grow rapidly, scholars are wondering what LSS is about and how LSS fits into sustainability science, while practitioners are asking how LSS actually contributes to sustainability in the real world. To help address these questions, this dissertation research aims to explore the currently underused problem-driven, diagnostic approach to enhancing landscape sustainability through an empirical example of urbanization-associated farmland loss (UAFL). Based mainly on multimethod analysis of bibliographic information, the dissertation explores conceptual issues such as how sustainability science differs from conventional sustainable development research, and how the past, present, and future research needs of LSS evolve. It also includes two empirical studies diagnosing the issue of urban expansion and the related food security concern in the context of China, and proposes a different problem framing for farmland preservation such that stakeholders can be more effectively mobilized. The most important findings are: (1) Sustainability science is not “old wine in a new bottle,” and in particular, is featured by its complex human-environment systems perspective and value-laden transdisciplinary perspective. (2) LSS has become a vibrant emerging field since 2004-2006 with over three-decade’s intellectual accumulation deeply rooted in landscape ecology, yet LSS has to further embrace the two featured perspectives of sustainability science and to conduct more problem-driven, diagnostic studies of concrete landscape-relevant sustainability concerns. (3) Farmland preservationists’ existing problem framing of UAFL is inappropriate for its invalid causal attribution (i.e., urban expansion is responsible for farmland loss; farmland loss is responsible for decreasing grain production; and decreasing grain production instead of increasing grain demand is responsible for grain self-insufficiency); the real problem with UAFL is social injustice due to collective action dilemma in preserving farmland for regional and global food sufficiency. The present research provides broad implications for landscape scientists, the sustainability research community, and UAFL stakeholders.
ContributorsZhou, Bingbing (Author) / Wu, Jianguo (Thesis advisor) / Aggarwal, Rimjhim (Committee member) / Anderies, John Marty (Committee member) / Janssen, Marcus Alexander (Committee member) / Turner II, Billie Lee (Committee member) / Arizona State University (Publisher)
Created2020