Matching Items (3)
Filtering by

Clear all filters

149941-Thumbnail Image.png
Description
There is increasing evidence that ovarian status influcences behavioral phenotype in workers of the honey bee Apis mellifera. Honey bee workers demonstrate a complex division of labor. Young workers perform in-hive tasks (e.g. brood care), while older bees perform outside tasks (e.g. foraging for food). This age correlated division of

There is increasing evidence that ovarian status influcences behavioral phenotype in workers of the honey bee Apis mellifera. Honey bee workers demonstrate a complex division of labor. Young workers perform in-hive tasks (e.g. brood care), while older bees perform outside tasks (e.g. foraging for food). This age correlated division of labor is known as temporal polyethism. Foragers demonstrate further division of labor with some bees biasing collection towards protein (pollen) and others towards carbohydrates (nectar). The Reproductive Ground-plan Hypothesis proposes that the ovary plays a regulatory role in foraging division of labor. European honey bee workers that have been selectively bred to store larger amounts of pollen (High strain) also have a higher number of ovarioles per ovary than workers from strains bred to store less pollen (Low strain). High strain bees also initiate foraging earlier than Low strain bees. The relationship between ovariole number and foraging behavior is also observed in wild-type Apis mellifera and Apis cerana: pollen-biased foragers have more ovarioles than nectar-biased foragers. In my first study, I investigated the pre-foraging behavioral patterns of the High and Low strain bees. I found that High strain bees progress through the temporal polyethism at a faster rate than Low strain bees. To ensure that the observed relationship between the ovary and foraging bias is not due to associated separate genes for ovary size and foraging behavior, I investigated foraging behavior of African-European backcross bees. The backcross breeding program was designed to break potential gene associations. The results from this study demonstrated the relationship between the ovary and foraging behavior, supporting the proposed causal linkage between reproductive development and behavioral phenotype. The final study was designed to elucidate a regulatory mechanism that links ovariole number with sucrose sensitivity, and loading decisions. I measured ovariole number, sucrose sensitivity and sucrose solution load size using a rate-controlled sucrose delivery system. I found an interaction effect between ovariole number and sucrose sensitivity for sucrose solution load size. This suggests that the ovary impacts carbohydrate collection through modulation of sucrose sensitivity. Because nectar and pollen collection are not independent, this would also impact protein collection.
ContributorsSiegel, Adam J (Author) / Page, Jr., Robert E (Thesis advisor) / Hamilton, Andrew L. (Committee member) / Brent, Colin S (Committee member) / Amdam, Gro V (Committee member) / McGraw, Kevin J. (Committee member) / Arizona State University (Publisher)
Created2011
134942-Thumbnail Image.png
Description
Division of labor is a hallmark for social insects and is closely related to honey bee morphology and physiology. Vitellogenin (Vg), a precursor protein in insect egg yolk, has several known functions apart from serving as a nutrient source for developing eggs. Vg is a component in the royal jelly

Division of labor is a hallmark for social insects and is closely related to honey bee morphology and physiology. Vitellogenin (Vg), a precursor protein in insect egg yolk, has several known functions apart from serving as a nutrient source for developing eggs. Vg is a component in the royal jelly produced in the hypopharyngeal glands (HPG) of worker bees which is used to feed both the developing brood and the queen. The HPG is closely associated with divisions of labor as the peak in its development corresponds with the nursing behavior. Independent of the connection between Vg and the HPG, Vg has been seen to play a fundamental role in divisions of labor by affecting worker gustatory responses, age of onset of foraging, and foraging preferences. Similar to Vg, the number of ovarioles in worker ovaries is also associated with division of labor as bees with more ovarioles tend to finish tasks in the hive and become foragers faster. This experiment aims to connect HPGs, ovaries, and Vg by proposing a link between them in the form of ecdysone (20E). 20E is a hormone produced by the ovaries and is linked to ovary development and Vg by tyramine titers. By treating young emerged bees with ecdysone and measuring HPG and ovary development over a trial period, this experiment seeks to determine whether 20E affects division of labor through Vg. We found that though the stress of injection caused a significant decrease in development of both the ovaries and HPG, there was no discernable effect of 20E on either of these organs.
ContributorsChin, Elijah Seth (Author) / Wang, Ying (Thesis director) / Page, Robert (Committee member) / Cook, Chelsea (Committee member) / School of Molecular Sciences (Contributor) / W. P. Carey School of Business (Contributor) / Barrett, The Honors College (Contributor)
Created2016-12
161944-Thumbnail Image.png
Description
Honeybees require the use of their antennae to perceive different scents and pheromones, communicate with other members of the colony, and even detect wind vibrations, sound waves, and carbon dioxide levels. Limiting and/or removing this sense makes bees much less effective at acquiring information. However, how antennal movements might be

Honeybees require the use of their antennae to perceive different scents and pheromones, communicate with other members of the colony, and even detect wind vibrations, sound waves, and carbon dioxide levels. Limiting and/or removing this sense makes bees much less effective at acquiring information. However, how antennal movements might be important for olfaction has not been studied in detail. The focus of this work was to evaluate how restriction of antennae movements might affect a bee’s ability to detect and perceive odors. Bees were made to learn a certain odor and were then split up into a control group, a treatment group that had their antennae fixed with eicosane, and a sham treatment group that had a dot of eicosane on their heads in such a way that it would not affect antennae movements but still add the same amount of weight. Following a period of acclimation, the bees were tested with the conditioned odor, one that was perceptually similar to it, and to a dissimilar odor. Using proboscis-extension duration and latency as response measures, it became clear that both antenna fixation and sham treatments affected the conditioned behavior. However, these treatment effects did not reach statistical significance. Briefly, both fixation of antennae as well as the sham treatment reduced the discriminability of the conditioned and similar odors. Although more data can be collected to more fully evaluate the significance of the treatments, the behavior of the sham group could indicate that mechanoreceptive hairs on the head play an important role in olfaction. It is also possible that there are other factors at play, possibly induced by the fixed bees’ increased stress levels.
ContributorsHozan, Alvin Robert (Author) / Smith, Brian H (Thesis advisor) / Lei, Hong (Committee member) / Cook, Chelsea (Committee member) / Arizona State University (Publisher)
Created2021