Matching Items (4)
Filtering by

Clear all filters

136374-Thumbnail Image.png
Description
The Baby Friendly Hospital Initiative (BFHI) was created in 1991 with the goal to provide support and education to mothers on breastfeeding in order to increase the rate and duration of breastfeeding across the world. Despite being around for over 20 years, it has only been successfully incorporated into 245

The Baby Friendly Hospital Initiative (BFHI) was created in 1991 with the goal to provide support and education to mothers on breastfeeding in order to increase the rate and duration of breastfeeding across the world. Despite being around for over 20 years, it has only been successfully incorporated into 245 hospitals in the United States as of 2015. Due to the many benefits this initiative brings to mothers, infants, and the hospitals themselves as well as being shown to increase the incidence, duration, and exclusivity of breastfeeding, the goal of this project was to create a mother friendly brochure sharing this. The brochure was created in order to spread the word of the BFHI to expecting mothers so that they are informed and able to use this information to not only improve their own child-birthing experience but also push for implementation in their delivering facilities. The brochure covers additional topics such as breastfeeding benefits and tips, lactation resources, and steps to incorporate into their own hospital stay if outside of a BFHI facility in order to get a few of the benefits that the Baby Friendly Initiative provides. The brochure was tested for clarity, effectiveness, and for overall reactions in a study conducted at a local women's clinic surveying expectant mothers through the use of a short survey. These results were used to make minor improvements to the brochure before moving on to plans of how to disseminate the brochure to more clinics within the Phoenix area. The dissemination of this brochure will share this important information with women of childbearing age and hopefully lead to greater knowledge and progress towards improved maternal and neonatal outcomes.
ContributorsGunnare, Chrystina Jean (Author) / Whisner, Corrie (Thesis director) / Bever, Jennie (Committee member) / Barrett, The Honors College (Contributor) / School of Nutrition and Health Promotion (Contributor)
Created2015-05
134592-Thumbnail Image.png
Description
Research concerning increased sensitivity and accurate glucose sensors have been on the forefront of diabetes mellitus. In this study, Electroactive Poly-Amidoamine Polymer (EPOP) was studied to determine if it can be used as a biocompatible electrode, with known redox mediators to determine if it can transfer its own electrons or

Research concerning increased sensitivity and accurate glucose sensors have been on the forefront of diabetes mellitus. In this study, Electroactive Poly-Amidoamine Polymer (EPOP) was studied to determine if it can be used as a biocompatible electrode, with known redox mediators to determine if it can transfer its own electrons or amplify signal, and if signal is amplified when using an Ag/AgCl working electrode. From the results, it was determined that EPOP is neither a redox mediator, since it cannot transfer its own electrons, nor an electron mediator, since it does not amplify measured current at a specific voltage. Rather, it behaves as an electron sink capacitor with inconsistent behavior when Ag/AgCl is used as the working electrode with the redox mediator alone or with the redox mediator using in combination with glucose oxidase (GOx) and glucose. This was validated using AC-Impedance which gave a -3.3999 slope for isolated 0.05 g/mL EPOP in solution and R2 value of 0.992 displaying it had more capacitor-like behavior compared to resistor-like behavior. For this reason, EPOP was infused into a carbon screen-printed electrode by adding it dissolved and undissolved at two levels into carbon ink. The effectiveness of this electrode was tested using a potentiostatic CV. For the 0.1 g/mL EPOP dissolved in carbon ink, the reduction voltage peak (0.18 V) was found to be slightly higher than a GDE (0.14 V); however, the measured current was found to be 1.57 times the amplitude of a GDE. When 0.05 g/mL EPOP in PBS dissolved in graphite ink was used to detect glucose as the working electrode, there was increased signal amplification, and therefore, increased sensitivity to glucose when using EPOP infused electrodes. This offers promising results for disposable glucose sensors.
ContributorsKapadia, Meera Vipul (Author) / LaBelle, Jeffrey (Thesis director) / Islam, Rafiqul (Committee member) / Honikel, Mackenzie (Committee member) / Chemical Engineering Program (Contributor) / Barrett, The Honors College (Contributor)
Created2017-05
133053-Thumbnail Image.png
Description
A point of care glucose sensor using electrochemical impedance spectroscopy (EIS) with a glutaraldehyde-linked enzyme shows promise as an effective biosensor platform. This report details the characterization of various factors on optimal binding frequency (OBF) and sensor performance to better prepare the sensor for future experimentation. Utilizing a screen printed

A point of care glucose sensor using electrochemical impedance spectroscopy (EIS) with a glutaraldehyde-linked enzyme shows promise as an effective biosensor platform. This report details the characterization of various factors on optimal binding frequency (OBF) and sensor performance to better prepare the sensor for future experimentation. Utilizing a screen printed carbon electrode, the necessary amount of glucose oxidase was determined to be 10 mg/mL. Binding time trials ranging from 1-3 minutes demonstrated that 1.5 minutes was the optimal binding time. This timeframe produced the strongest impedance response at each glucose concentration. Using this enzyme concentration and binding time, the native OBF of the biosensor was found to be 1.18 Hz using vector analysis. Temperature testing showed little change in OBF in sensors exposed to 4 \u00B0C through 43.3 \u00B0C. Only exposure to 60 \u00B0C resulted in rapid OBF change which was likely due to glucose oxidase becoming denatured. Humidity tests showed little change in OBF and sensor performance between sensors prepared at the humidities of 7.5%, 10.625% and 16.5% humidity. Alternatively, solutions containing common interference molecules such as uric acid, acetaminophen, and ascorbic acid resulted in a highly shifted OBF and drastically reduced signal.
ContributorsMatloff, Daniel (Co-author) / Khanwalker, Mukund (Co-author) / Johns, Jared (Co-author) / LaBelle, Jeffrey (Thesis director) / Pizziconi, Vincent (Committee member) / Lin, Chi (Committee member) / Dean, W.P. Carey School of Business (Contributor) / School of Life Sciences (Contributor) / Barrett, The Honors College (Contributor)
Created2018-12
134280-Thumbnail Image.png
Description
As of today, there does not exist a cheap diagnostic for lactate for use in trauma centers. $671 billion are spent on trauma accidents and emergency rooms, with money focused on treatments such as YSI and ELISA, costing $1500 and $200, respectively. Gold disk electrodes were used to immobilize lactate

As of today, there does not exist a cheap diagnostic for lactate for use in trauma centers. $671 billion are spent on trauma accidents and emergency rooms, with money focused on treatments such as YSI and ELISA, costing $1500 and $200, respectively. Gold disk electrodes were used to immobilize lactate dehydrogenase and glucose oxidase, with electrochemical impedance spectroscopy (EIS) used as the method for detection. Two lactate experimental runs were completed with data detailing a linear model and positive correlation for imaginary impedance and concentration, and one glucose experimental run was completed proving that a continuous system can be completed accounting for reaction and consumption using EIS, a process previously not done before.
ContributorsEltohamy, Omar Khaled (Author) / LaBelle, Jeffrey (Thesis director) / Lin, Chi-En (Committee member) / Harrington Bioengineering Program (Contributor, Contributor) / Barrett, The Honors College (Contributor)
Created2017-05