Matching Items (3)
Filtering by

Clear all filters

133858-Thumbnail Image.png
Description
Working memory and cognitive functions contribute to speech recognition in normal hearing and hearing impaired listeners. In this study, auditory and cognitive functions are measured in young adult normal hearing, elderly normal hearing, and elderly cochlear implant subjects. The effects of age and hearing on the different measures are investigated.

Working memory and cognitive functions contribute to speech recognition in normal hearing and hearing impaired listeners. In this study, auditory and cognitive functions are measured in young adult normal hearing, elderly normal hearing, and elderly cochlear implant subjects. The effects of age and hearing on the different measures are investigated. The correlations between auditory/cognitive functions and speech/music recognition are examined. The results may demonstrate which factors can better explain the variable performance across elderly cochlear implant users.
ContributorsKolberg, Courtney Elizabeth (Author) / Luo, Xin (Thesis director) / Azuma, Tamiko (Committee member) / Department of Speech and Hearing Science (Contributor) / Barrett, The Honors College (Contributor)
Created2018-05
134779-Thumbnail Image.png
Description
Pitch and timbre perception are two important dimensions of auditory perception. These aspects of sound aid the understanding of our environment, and contribute to normal everyday functioning. It is therefore important to determine the nature of perceptual interaction between these two dimensions of sound. This study tested the interactions between

Pitch and timbre perception are two important dimensions of auditory perception. These aspects of sound aid the understanding of our environment, and contribute to normal everyday functioning. It is therefore important to determine the nature of perceptual interaction between these two dimensions of sound. This study tested the interactions between pitch perception associated with the fundamental frequency (F0) and sharpness perception associated with the spectral slope of harmonic complex tones in normal hearing (NH) listeners and cochlear implant (CI) users. Pitch and sharpness ranking was measured without changes in the non-target dimension (Experiment 1), with different amounts of unrelated changes in the non-target dimension (Experiment 2), and with congruent/incongruent changes of similar perceptual salience in the non-target dimension (Experiment 3). The results showed that CI users had significantly worse pitch and sharpness ranking thresholds than NH listeners. Pitch and sharpness perception had symmetric interactions in NH listeners. However, for CI users, spectral slope changes significantly affected pitch ranking, while F0 changes had no significant effect on sharpness ranking. CI users' pitch ranking sensitivity was significantly better with congruent than with incongruent spectral slope changes. These results have important implications for CI processing strategies to better transmit pitch and timbre cues to CI users.
ContributorsSoslowsky, Samara Miranda (Author) / Luo, Xin (Thesis director) / Yost, William (Committee member) / Dorman, Michael (Committee member) / Department of Speech and Hearing Science (Contributor) / Barrett, The Honors College (Contributor)
Created2016-12
171425-Thumbnail Image.png
Description
Prosodic features such as fundamental frequency (F0), intensity, and duration convey important information of speech intonation (i.e., is it a statement or a question?). Because cochlear implants (CIs) do not adequately encode pitch-related F0 cues, pre-lignually deaf pediatric CI users have poorer speech intonation perception and production than normal-hearing (NH)

Prosodic features such as fundamental frequency (F0), intensity, and duration convey important information of speech intonation (i.e., is it a statement or a question?). Because cochlear implants (CIs) do not adequately encode pitch-related F0 cues, pre-lignually deaf pediatric CI users have poorer speech intonation perception and production than normal-hearing (NH) children. In contrast, post-lingually deaf adult CI users have developed speech production skills via normal hearing before deafness and implantation. Further, combined electric hearing (via CI) and acoustic hearing (via hearing aid, HA) may improve CI users’ perception of pitch cues in speech intonation. Therefore, this study tested (1) whether post-lingually deaf adult CI users have similar speech intonation production to NH adults and (2) whether their speech intonation production improves with auditory feedback via CI+HA (i.e., bimodal hearing). Eight post-lingually deaf adult bimodal CI users and nine NH adults participated in this study. 10 question-and-answer dialogues with an experimenter were used to elicit 10 pairs of syntactically matched questions and statements from each participant. Bimodal CI users were tested under four hearing conditions: no-device (ND), HA, CI, and CI+HA. F0 change, intensity change, and duration ratio between the last two syllables of each utterance were analyzed to evaluate the quality of speech intonation production. The results showed no significant differences between CI and NH participants in any of the acoustic features of questions and statements. For CI participants, the CI+HA condition led to significantly greater F0 decreases of statements than the ND condition, while the ND condition led to significantly greater duration ratios of questions and statements. These results suggest that bimodal CI users change the use of prosodic cues for speech intonation production in different hearing conditions and access to auditory feedback via CI+HA may improve their voice pitch control to produce more salient statement intonation contours.
ContributorsAi, Chang (Author) / Luo, Xin (Thesis advisor) / Daliri, Ayoub (Committee member) / Davidson, Lisa (Committee member) / Arizona State University (Publisher)
Created2022