Matching Items (783)
Filtering by

Clear all filters

ContributorsChang, Ruihong (Performer) / ASU Library. Music Library (Publisher)
Created2018-03-29
153808-Thumbnail Image.png
Description
Four Souvenirs for Violin and Piano was composed by Paul Schoenfeld (b.1947) in 1990 as a showpiece, spotlighting the virtuosity of both the violin and piano in equal measure. Each movement is a modern interpretation of a folk or popular genre, re- envisioned over intricate jazz harmonies and rhythms. The

Four Souvenirs for Violin and Piano was composed by Paul Schoenfeld (b.1947) in 1990 as a showpiece, spotlighting the virtuosity of both the violin and piano in equal measure. Each movement is a modern interpretation of a folk or popular genre, re- envisioned over intricate jazz harmonies and rhythms. The work was commissioned by violinist Lev Polyakin, who specifically requested some short pieces that could be performed in a local jazz establishment named Night Town in Cleveland, Ohio. The result is a work that is approximately fifteen minutes in length. Schoenfeld is a respected composer in the contemporary classical music community, whose Café Music (1986) for piano trio has recently become a staple of the standard chamber music repertoire. Many of his other works, however, remain in relative obscurity. It is the focus of this document to shed light on at least one other notable composition; Four Souvenirs for Violin and Piano. Among the topics to be discussed regarding this piece are a brief history behind the genesis of this composition, a structural summary of the entire work and each of its movements, and an appended practice guide based on interview and coaching sessions with the composer himself. With this project, I hope to provide a better understanding and appreciation of this work.
ContributorsJanczyk, Kristie Annette (Author) / Ryan, Russell (Thesis advisor) / Campbell, Andrew (Committee member) / Norton, Kay (Committee member) / Arizona State University (Publisher)
Created2015
ContributorsASU Library. Music Library (Publisher)
Created2018-02-23
ContributorsWhite, Aaron (Performer) / Kim, Olga (Performer) / Hammond, Marinne (Performer) / Shaner, Hayden (Performer) / Yoo, Katie (Performer) / Shoemake, Crista (Performer) / Gebe, Vladimir, 1987- (Performer) / Wills, Grace (Performer) / McKinch, Riley (Performer) / Freshmen Four (Performer) / ASU Library. Music Library (Publisher)
Created2018-04-27
ContributorsRosenfeld, Albor (Performer) / Pagano, Caio, 1940- (Performer) / ASU Library. Music Library (Publisher)
Created2018-10-03
ContributorsASU Library. Music Library (Publisher)
Created2018-10-04
ContributorsCao, Yuchen (Performer) / Chen, Sicong (Performer) / Soberano, Chino (Performer) / Nam, Michelle (Performer) / Collins, Clarice (Performer) / Witt, Juliana (Performer) / Liu, Jingting (Performer) / Chen, Neilson (Performer) / Zhang, Aihua (Performer) / Jiang, Zhou (Performer) / ASU Library. Music Library (Publisher)
Created2018-04-25
132958-Thumbnail Image.png
Description
Alzheimer’s disease (AD) is characterized by the aberrant accumulation and aggregation of proteins that in turn contribute to learning and memory deficits. The mammalian target of rapamycin (mTOR) plays an essential role in regulating the synthesis and degradation of proteins that contribute to cell growth and learning and memory. Hyperactivity

Alzheimer’s disease (AD) is characterized by the aberrant accumulation and aggregation of proteins that in turn contribute to learning and memory deficits. The mammalian target of rapamycin (mTOR) plays an essential role in regulating the synthesis and degradation of proteins that contribute to cell growth and learning and memory. Hyperactivity of mTOR can cause detrimental effects to protein homeostasis and has been linked to AD. The proline-rich Akt-substrate 40 kDa (PRAS40) is a negative regulator of mTOR, as it binds to mTOR directly, reducing its activity. Upon phosphorylation, PRAS40 detaches from mTOR thereby releasing its inhibitory effects. Increased phosphorylation of PRAS40, and a subsequent increase in mTOR activity has been linked to diabetes, cancer, and other conditions; however, PRAS40’s direct role in the pathogenesis of AD is still unclear. To investigate the role of PRAS40 in AD pathology, we generated a PRAS40 conditional knockout mouse model and, using a neuronal-specific Cre recombinase, selectively removed PRAS40 from APP/PS1 mice. Removing neuronal PRAS40 exacerbated Abeta levels and plaque load but paradoxically had no significant effects on mTOR signaling. Mechanistically, the increase in Abeta pathology was linked to a decrease in autophagy function. Our data highlight a primary role of PRAS40 in the pathogenesis of AD.
ContributorsSurendra, Likith (Author) / Oddo, Salvatore (Thesis director) / Velazquez, Ramon (Committee member) / Pratico, Domenico (Committee member) / School of Life Sciences (Contributor) / Dean, W.P. Carey School of Business (Contributor) / Barrett, The Honors College (Contributor)
Created2019-05
134045-Thumbnail Image.png
Description
The mammalian target of rapamycin (mTOR) is integral in regulating cell growth as it maintains a homeostatic balance of proteins by modulating their synthesis and degradation. In the brain, mTOR regulates protein-driven neuroplastic changes that modulate learning and memory. Nevertheless, upregulation of mTOR can cause detrimental effect in spatial memory

The mammalian target of rapamycin (mTOR) is integral in regulating cell growth as it maintains a homeostatic balance of proteins by modulating their synthesis and degradation. In the brain, mTOR regulates protein-driven neuroplastic changes that modulate learning and memory. Nevertheless, upregulation of mTOR can cause detrimental effect in spatial memory and synaptic plasticity. The proline-rich Akt-substrate 40 kDa (PRAS40) is a key negative regulator of mTOR, as it binds mTOR and directly reduces its activity. To investigate the role of PRAS40 on learning and memory, we generated a transgenic mouse model in which we used the tetracycline-off system to regulate the expression of PRAS40 specifically in neurons of the hippocampus. After induction, we found that mice overexpressing PRAS40 performed better than control mice in the Morris Water Maze behavioral test. We further show that the improvement in memory was associated with a decrease in mTOR signaling, an increase in dendritic spines in hippocampal pyramidal neurons, and an increase in the levels of brain-derived neurotrophic factor (BDNF), a neurotrophin necessary for learning and memory. This is the first evidence that shows that increasing PRAS40 in the mouse brain enhances learning and memory deficits.
ContributorsSarette, Patrick William (Author) / Oddo, Salvatore (Thesis director) / Caccamo, Antonella (Committee member) / Kelleher, Raymond (Committee member) / School of Molecular Sciences (Contributor) / School of Life Sciences (Contributor) / Barrett, The Honors College (Contributor)
Created2018-05
ContributorsMcLin, Katherine (Performer) / Campbell, Andrew (Pianist) (Performer) / Ericson, John Q. (John Quincy), 1962- (Performer) / McLin/Campbell Duo (Performer) / ASU Library. Music Library (Publisher)
Created2018-09-23