Matching Items (8)
Filtering by

Clear all filters

135399-Thumbnail Image.png
Description
Language acquisition is a phenomenon we all experience, and though it is well studied many questions remain regarding the neural bases of language. Whether a hearing speaker or Deaf signer, spoken and signed language acquisition (with eventual proficiency) develop similarly and share common neural networks. While signed language and spoken

Language acquisition is a phenomenon we all experience, and though it is well studied many questions remain regarding the neural bases of language. Whether a hearing speaker or Deaf signer, spoken and signed language acquisition (with eventual proficiency) develop similarly and share common neural networks. While signed language and spoken language engage completely different sensory modalities (visual-manual versus the more common auditory-oromotor) both languages share grammatical structures and contain syntactic intricacies innate to all languages. Thus, studies of multi-modal bilingualism (e.g. a native English speaker learning American Sign Language) can lead to a better understanding of the neurobiology of second language acquisition, and of language more broadly. For example, can the well-developed visual-spatial processing networks in English speakers support grammatical processing in sign language, as it relies heavily on location and movement? The present study furthers the understanding of the neural correlates of second language acquisition by studying late L2 normal hearing learners of American Sign Language (ASL). Twenty English speaking ASU students enrolled in advanced American Sign Language coursework participated in our functional Magnetic Resonance Imaging (fMRI) study. The aim was to identify the brain networks engaged in syntactic processing of ASL sentences in late L2 ASL learners. While many studies have addressed the neurobiology of acquiring a second spoken language, no previous study to our knowledge has examined the brain networks supporting syntactic processing in bimodal bilinguals. We examined the brain networks engaged while perceiving ASL sentences compared to ASL word lists, as well as written English sentences and word lists. We hypothesized that our findings in late bimodal bilinguals would largely coincide with the unimodal bilingual literature, but with a few notable differences including additional attention networks being engaged by ASL processing. Our results suggest that there is a high degree of overlap in sentence processing networks for ASL and English. There also are important differences in regards to the recruitment of speech comprehension, visual-spatial and domain-general brain networks. Our findings suggest that well-known sentence comprehension and syntactic processing regions for spoken languages are flexible and modality-independent.
ContributorsMickelsen, Soren Brooks (Co-author) / Johnson, Lisa (Co-author) / Rogalsky, Corianne (Thesis director) / Azuma, Tamiko (Committee member) / Howard, Pamela (Committee member) / Department of Speech and Hearing Science (Contributor) / School of Human Evolution and Social Change (Contributor) / Barrett, The Honors College (Contributor)
Created2016-05
133094-Thumbnail Image.png
Description
The use of functional magnetic resonance imaging (fMRI) has been increasing in popularity due to its ability to measure brain activity during presentation of stimuli. Blood flow responses in the brain occur when a stimulus is presented and can be measured using fMRI. The delay of onset of this blood

The use of functional magnetic resonance imaging (fMRI) has been increasing in popularity due to its ability to measure brain activity during presentation of stimuli. Blood flow responses in the brain occur when a stimulus is presented and can be measured using fMRI. The delay of onset of this blood flow response can vary due to distances from the heart to the brain blood vessels. This variability causes differences in onset and time to peak blood flow response across the brain that is not currently predictable. To account for this, statistical analyses add the response's temporal derivative to regression models. Derived from the Taylor series expansion, the temporal derivative corrects for small variations in the time delay for the blood flow response (i.e. less than 1 second or so). However, I show that inclusion of the temporal derivative in analyses increases false positive rates. I conducted fMRI analyses on data collected as participants complete motor responses and on resting state data. Analyses were repeated both with and without inclusion of the temporal derivative. More significant responses were found with inclusion of the temporal derivative in both cases, suggesting possible increases in false positive rates. The goal of the present study is to increase awareness of the current fMRI data analysis practices and their potential flaws.
ContributorsTemporini, Victoria (Author) / McClure, Samuel (Thesis director) / Glenberg, Arthur (Committee member) / Elliott, Blake (Committee member) / Department of Psychology (Contributor) / School of International Letters and Cultures (Contributor) / Barrett, The Honors College (Contributor)
Created2018-12
134926-Thumbnail Image.png
Description
The International Dyslexia Association defines dyslexia as a learning disorder that is characterized by poor spelling, decoding, and word recognition abilities. There is still no known cause of dyslexia, although it is a very common disability that affects 1 in 10 people. Previous fMRI and MRI research in dyslexia has

The International Dyslexia Association defines dyslexia as a learning disorder that is characterized by poor spelling, decoding, and word recognition abilities. There is still no known cause of dyslexia, although it is a very common disability that affects 1 in 10 people. Previous fMRI and MRI research in dyslexia has explored the neural correlations of hemispheric lateralization and phonemic awareness in dyslexia. The present study investigated the underlying neurobiology of five adults with dyslexia compared to age- and sex-matched control subjects using structural and functional magnetic resonance imaging. All subjects completed a large battery of behavioral tasks as part of a larger study and underwent functional and structural MRI acquisition. This data was collected and preprocessed at the University of Washington. Analyses focused on examining the neural correlates of hemispheric lateralization, letter reversal mistakes, reduced processing speed, and phonemic awareness. There were no significant findings of hemispheric differences between subjects with dyslexia and controls. The subject making the largest amount of letter reversal errors had deactivation in their cerebellum during the fMRI language task. Cerebellar white matter volume and surface area of the premotor cortex was the largest in the individual with the slowest reaction time to tapping. Phonemic decoding efficiency had a high correlation with neural activation in the primary motor cortex during the fMRI motor task (r=0.6). Findings from the present study suggest that brain regions utilized during motor control, such as the cerebellum, premotor cortex, and primary motor cortex, may have a larger role in dyslexia then previously considered. Future studies are needed to further distinguish the role of the cerebellum and other motor regions in relation to motor control and language processing deficits related to dyslexia.
ContributorsHoulihan, Chloe Carissa Prince (Author) / Rogalsky, Corianne (Thesis director) / Peter, Beate (Committee member) / Harrington Bioengineering Program (Contributor) / Barrett, The Honors College (Contributor)
Created2016-12
135492-Thumbnail Image.png
Description
This pilot study evaluated whether Story Champs and Puente de Cuentos helped bilingual preschoolers increase their usage of emotional terms and ability to tell stories. Participants in this study included 10 Spanish-English bilingual preschoolers. Intervention was conducted in 9 sessions over 3 days using the Test of Narrative Retell to

This pilot study evaluated whether Story Champs and Puente de Cuentos helped bilingual preschoolers increase their usage of emotional terms and ability to tell stories. Participants in this study included 10 Spanish-English bilingual preschoolers. Intervention was conducted in 9 sessions over 3 days using the Test of Narrative Retell to measure results. Results did not find significant gains in either emotional term usage or ability to tell stories, but the results were promising as a pilot study.
ContributorsSato, Leslie Mariko (Author) / Restrepo, Maria (Thesis director) / Dixon, Maria (Committee member) / Department of Speech and Hearing Science (Contributor) / Barrett, The Honors College (Contributor)
Created2016-05
148383-Thumbnail Image.png
Description

The distinctions between the neural resources supporting speech and music comprehension have long been studied using contexts like aphasia and amusia, and neuroimaging in control subjects. While many models have emerged to describe the different networks uniquely recruited in response to speech and music stimuli, there are still many questions,

The distinctions between the neural resources supporting speech and music comprehension have long been studied using contexts like aphasia and amusia, and neuroimaging in control subjects. While many models have emerged to describe the different networks uniquely recruited in response to speech and music stimuli, there are still many questions, especially regarding left-hemispheric strokes that disrupt typical speech-processing brain networks, and how musical training might affect the brain networks recruited for speech after a stroke. Thus, our study aims to explore some questions related to the above topics. We collected task-based functional MRI data from 12 subjects who previously experienced a left-hemispheric stroke. Subjects listened to blocks of spoken sentences and novel piano melodies during scanning to examine the differences in brain activations in response to speech and music. We hypothesized that speech stimuli would activate right frontal regions, and music stimuli would activate the right superior temporal regions more than speech (both findings not seen in previous studies of control subjects), as a result of functional changes in the brain, following the left-hemispheric stroke and particularly the loss of functionality in the left temporal lobe. We also hypothesized that the music stimuli would cause a stronger activation in right temporal cortex for participants who have had musical training than those who have not. Our results indicate that speech stimuli compared to rest activated the anterior superior temporal gyrus bilaterally and activated the right inferior frontal lobe. Music stimuli compared to rest did not activate the brain bilaterally, but rather only activated the right middle temporal gyrus. When the group analysis was performed with music experience as a covariate, we found that musical training did not affect activations to music stimuli specifically, but there was greater right hemisphere activation in several regions in response to speech stimuli as a function of more years of musical training. The results of the study agree with our hypotheses regarding the functional changes in the brain, but they conflict with our hypothesis about musical expertise. Overall, the study has generated interesting starting points for further explorations of how musical neural resources may be recruited for speech processing after damage to typical language networks.

ContributorsKarthigeyan, Vishnu R (Author) / Rogalsky, Corianne (Thesis director) / Daliri, Ayoub (Committee member) / Harrington Bioengineering Program (Contributor) / School of Life Sciences (Contributor) / Barrett, The Honors College (Contributor)
Created2021-05
161713-Thumbnail Image.png
Description
Individuals with autism spectrum disorder (ASD) are known to show impairments in various domains of executive function (EF) such as behavioral flexibility or inhibitory control. Research suggests that EF impairment in adults with ASD may relate to ASD core symptoms, restrictive behaviors and social communication deficits. Mindfulness-based stress

Individuals with autism spectrum disorder (ASD) are known to show impairments in various domains of executive function (EF) such as behavioral flexibility or inhibitory control. Research suggests that EF impairment in adults with ASD may relate to ASD core symptoms, restrictive behaviors and social communication deficits. Mindfulness-based stress reduction (MBSR) has shown promise for improving EF abilities in neurotypical adults, but research has not explored its efficacy or neural mechanisms in adults with ASD. This pilot study examines the effects of an 8-week MBSR intervention on self-report measures of EF and resting-state functional connectivity in a sample of adults with ASD. Fifty-four participants were assigned either to an MBSR group (n = 29) or a social support group (n = 25). Executive function was measured using the BRIEF-2 before and after the intervention for the twenty-seven participants in the second cohort. MBSR-specific improvements in EF were found for BRIEF measures of initiation, inhibition, and working-memory. Resting-state fMRI data was analyzed using independent component analysis (ICA), and group by time resting-state functional connectivity differences were observed between the cerebellar network and frontal regions including the right frontal pole (rFP), medial frontal cortex (MFC) and left and right superior frontal gyri (SFG). The MBSR group showed increases in functional connectivity between the cerebellum and EF regions which correlated with improvements in BRIEF-2 measures. These findings suggest that MBSR may improve EF domains in adults with ASD, and that increases in functional connectivity between the cerebellum and frontal regions while at rest may be a mechanism for such improvements.
ContributorsGuerithault, Nicolas (Author) / Braden, B. Blair (Thesis advisor) / Rogalsky, Corianne (Committee member) / Dixon, Maria (Committee member) / Arizona State University (Publisher)
Created2021
165776-Thumbnail Image.png
Description

We describe a secondary analysis of an in vitro experiment that supports the capabilities of a relatively new imaging technique known as functional Magnetic Resonance Electrical Impedance Tomography (fMREIT) to detect conductivity changes in neural tissue caused by activity. Methods: Magnetic Resonance (MR) phase data of active Aplysia ganglia tissue

We describe a secondary analysis of an in vitro experiment that supports the capabilities of a relatively new imaging technique known as functional Magnetic Resonance Electrical Impedance Tomography (fMREIT) to detect conductivity changes in neural tissue caused by activity. Methods: Magnetic Resonance (MR) phase data of active Aplysia ganglia tissue in artificial seawater (ASW) were collected before and after exposure to an excitotoxin using two different imaging current strengths, and these data were then used to reconstruct conductivity changes throughout the tissue. Results: We found that increases in neural activity led to significant increases in imaged conductivity when using high imaging currents, but these differences in conductivity were not seen in regions that did not contain neural tissue nor in data where there were no differences in neural activity. Conclusion: We conclude that the analysis presented here supports fMREIT as a contrast technique capable of imaging neural activity in live tissue more directly than functional imaging methods such as BOLD fMRI.

ContributorsBarnett, Cole (Author) / Sadleir, Rosalind (Thesis director) / Buneo, Christopher (Committee member) / Bartelle, Benjamin (Committee member) / Barrett, The Honors College (Contributor) / Harrington Bioengineering Program (Contributor)
Created2022-05
Description

The goal of the research is to assist Barrett Honors students at Arizona State University by generating a mindset that embraces feelings of stress rather than avoiding it. After data collection was complete, the researchers created a valuable and necessary field guide for ASU Barrett Faculty to provide for incoming

The goal of the research is to assist Barrett Honors students at Arizona State University by generating a mindset that embraces feelings of stress rather than avoiding it. After data collection was complete, the researchers created a valuable and necessary field guide for ASU Barrett Faculty to provide for incoming students. The present study has been compiled to prove the importance of reframing one's perception of stress as an aid, reducing one's “symptomatic” perception of stress and experiencing life's stresses as challenges, and to cease living in a constant unhealthy state of fight or flight. The main research questions are: What is the average perceived stress level of Barrett Honors students and what information can ASU further provide incoming Barrett students that will alleviate overall perceived stress levels based on the data collection and field guide generated from the present study? The basis of the present study began with a survey compiled of demographic questions, questions relating to the Human Event (HE - a required honors course), and lastly the Perceived Stress Scale (PSS) developed by Sheldon Cohen, Tom Kamarck, and Robin Mermelstein, with slight modification for students relating to their perception of stress over the last semester. After survey responses were concluded, it was determined that the average perceived stress score among honors students was 18.57, shockingly lower than what was previously thought. The overall results of the PSS survey indicate that Barrett students are moderately stressed, disproving the researchers initial hypothesis that honors students perceived stress scores would be considered high on the PSS. The results did provide researchers with enough data to compile an incoming Barrett student field guide based on desired information reported in the survey. A discussion of the results explores the purpose of how the present study can be used in helping students with perceived stress, interpretations and significance of the data, correlation between academic success and perceived stress, major contributions to the study, and limitations and recommendations for future research.

ContributorsFaull, Elizabeth (Author) / Tallman, Mackenzie (Co-author) / Kappes, Janelle (Thesis director) / Sturgess, Jessica (Committee member) / Barrett, The Honors College (Contributor) / College of Integrative Sciences and Arts (Contributor)
Created2023-05