Matching Items (3)
132918-Thumbnail Image.png
Description
Through the advancement of technology, social media, and the ever-growing connectedness society has with the digital world, the automotive industry’s market paradigm has been uprooted and turned onto its head. There is a race globally for the first company to achieve a truly autonomous vehicle, and one of the major

Through the advancement of technology, social media, and the ever-growing connectedness society has with the digital world, the automotive industry’s market paradigm has been uprooted and turned onto its head. There is a race globally for the first company to achieve a truly autonomous vehicle, and one of the major testing grounds is in the very state of Arizona. The technology is still under development, and there are many challenges and snags, like necessary big data, companies are encountering along the way. A smart city could share the necessary level of data with driverless vehicles, and through the back and forth communication of cars and cities could bring in that level of context and understanding needed to bring the promise of safer driving to life. Currently, companies are tight-lipped and keep to themselves on their research and development, so governments are struggling to manage the upcoming changes with such little information. The challenge is how to deal with the newly emerging inventions which managers have not figured out yet, as far as autonomous cars are concerned. This thesis covers the difficulties governments and companies will face when attempting to adopt driverless cars and smart cities into their infrastructure; public approval, legislation, infrastructure reforms, and communication between municipals and corporations. Through a survey conducted specifically for this thesis, interviews with government officials and corporate managers, and additional research, this thesis provides clearer insights on the situation and provides recommendations for managers and governments alike.
ContributorsStone, Mindi (Author) / Lynch, Patrick (Thesis director) / Nelson, Roy C. (Committee member) / Thunderbird School of Global Management (Contributor) / Barrett, The Honors College (Contributor)
Created2019-05
154890-Thumbnail Image.png
Description

There is much at stake with the smart city. This urban governance movement is

predicated on infusing information-and-communication technology into nearly all aspects of the built environment, while at the same time transforming how cities are planned and managed. The smart city movement is global in scale with initiatives being rolled

There is much at stake with the smart city. This urban governance movement is

predicated on infusing information-and-communication technology into nearly all aspects of the built environment, while at the same time transforming how cities are planned and managed. The smart city movement is global in scale with initiatives being rolled out all over the planet, driven by proponents with deep pockets of wealth and influence, and a lucrative opportunity with market projections in the billions or trillions of dollars (over the next five to ten years). However, the smart city label can be nebulous and amorphous, seemingly subsuming unrelated technologies, practices, and policies as necessary. Yet, even with this ambiguity, or perhaps because of it, the smart city vision is still able to colonize urban landscapes and capture the political imaginations of decision makers. In order to know just what the smart city entails I work to bring analytic clarity to the actions, visions, and values of this movement.

In short, the arc of this project moves from diving into the "smart city" discourses; to picking apart the ideologies at its heart; to engaging with the dual logics—control and accumulation—that drive the smart city; and finally to imagining what an alternative techno- politics might look like and how we might achieve it. My goal is that by analyzing the techno- politics of the smart city we will be better equipped to understand these urban transformations— what logics drive them, what they herald, and what our role should be in how they develop.

ContributorsSadowski, Jathan (Author) / Guston, David H. (Thesis advisor) / Finn, Edward (Committee member) / Miller, Thaddeus R. (Committee member) / Arizona State University (Publisher)
Created2016
190881-Thumbnail Image.png
Description
The management of underground utilities is a complex and challenging task due to the uncertainty regarding the location of existing infrastructure. The lack of accurate information often leads to excavation-related damages, which pose a threat to public safety. In recent years, advanced underground utilities management systems have been developed to

The management of underground utilities is a complex and challenging task due to the uncertainty regarding the location of existing infrastructure. The lack of accurate information often leads to excavation-related damages, which pose a threat to public safety. In recent years, advanced underground utilities management systems have been developed to improve the safety and efficiency of excavation work. This dissertation aims to explore the potential applications of blockchain technology in the management of underground utilities and reduction of excavation-related damage. The literature review provides an overview of the current systems for managing underground infrastructure, including Underground Infrastructure Management (UIM) and 811, and highlights the benefits of advanced underground utilities management systems in enhancing safety and efficiency on construction sites. The review also examines the limitations and challenges of the existing systems and identifies the opportunities for integrating blockchain technology to improve their performance. The proposed application involves the creation of a shared database of information about the location and condition of pipes, cables, and other underground infrastructure, which can be updated in real time by authorized users such as utility companies and government agencies. The use of blockchain technology can provide an additional layer of security and transparency to the system, ensuring the reliability and accuracy of the information. Contractors and excavation companies can access this information before commencing work, reducing the risk of accidental damage to underground utilities.
ContributorsAlnahari, Mohammed S (Author) / Ariaratnam, Samuel T (Thesis advisor) / El Asmar, Mounir (Committee member) / Czerniawski, Thomas (Committee member) / Arizona State University (Publisher)
Created2023