Matching Items (6)
Filtering by

Clear all filters

133854-Thumbnail Image.png
Description
The spread of urbanization leads to habitat fragmentation and deterioration and changes the composition of ecosystems for species all over the world. Different groups of organisms are impacted differently, and insects have experienced loss in diversity and abundance due to changing environmental factors. Here, I collected seed beetles across 12

The spread of urbanization leads to habitat fragmentation and deterioration and changes the composition of ecosystems for species all over the world. Different groups of organisms are impacted differently, and insects have experienced loss in diversity and abundance due to changing environmental factors. Here, I collected seed beetles across 12 urban and rural sites in Phoenix, Arizona, to analyze the effects of urbanization and habitat variation on beetle diversity and abundance. I found that urbanization, host tree origin, and environmental factors such as tree diversity and density had no impact on overall beetle diversity and abundance. Beetles were found to have higher density on hosts with a higher density of pods. In assessing individual beetle species, some beetles exhibited higher density in rural sites with native trees, and some were found more commonly on nonnative tree species. The observed differences in beetle density demonstrate the range of effects urbanization and environmental features can have on insect species. By studying ecosystem interactions alongside changing environments, we can better predict the role urbanization and human development can have on different organisms.
ContributorsPaduano, Gabrielle (Author) / Savalli, Udo (Thesis director) / Sweat, Ken (Committee member) / Division of Teacher Preparation (Contributor) / School of Mathematical and Natural Sciences (Contributor) / Barrett, The Honors College (Contributor)
Created2018-05
137123-Thumbnail Image.png
Description
Insects of the order Embiidina spin sheets of very thin silk fibers from their forelimbs to build silken shelters on bark and in leaf litter in tropical climates. Their shelters are very stiff and hydrophobic to keep out predators and rain. In this study, the existence of an outer lipid

Insects of the order Embiidina spin sheets of very thin silk fibers from their forelimbs to build silken shelters on bark and in leaf litter in tropical climates. Their shelters are very stiff and hydrophobic to keep out predators and rain. In this study, the existence of an outer lipid coating on silk produced by the embiid Antipaluria urichi is shown using scanning and transmission electron microscopy, FT-IR, and water drop contact angle analysis. Subsequently, the composition of the lipid layer is then characterized by 1H NMR and GC-MS.
ContributorsOsborn Popp, Thomas Michael (Author) / Yarger, Jeffery (Thesis director) / Holland, Gregory (Committee member) / Barrett, The Honors College (Contributor) / Department of Chemistry and Biochemistry (Contributor)
Created2014-05
132881-Thumbnail Image.png
Description
Temnothorax rugatulus ants are known to recruit via the use of tandem running, a typically two ant interaction in which a leader ant guides a follower ant to a particular location with the intent of teaching the follower ant the knowledge required to navigate to said location independently. In general,

Temnothorax rugatulus ants are known to recruit via the use of tandem running, a typically two ant interaction in which a leader ant guides a follower ant to a particular location with the intent of teaching the follower ant the knowledge required to navigate to said location independently. In general, the purposes of tandem runs are fairly clear. There are tandem runs towards food in order to recruit gatherers, and there are tandem runs towards potential new nest sites to allow the colony to assess site quality. However, a group of tandem runs known as “reverse tandem runs” are a subject of mystery at this time. Reverse tandem runs are a type of tandem run found mainly during specific spans of Temnothorax colony migration. They typically arise during the period of migration when brood are being transported into a new nest site. The carriers of the brood, when returning to the old nest site to gather more brood, occasionally start tandem runs running backwards towards the old nest. In this study, the effect of navigational and physical obstacles encountered during migrations on the number of reverse tandem runs was tested. The hypothesis being that such a disturbance would cause an increase in reverse tandem runs as a method of overcoming the obstacle. This study was completed over the course of two experiments. This first experiment showed no indication of the ants having any trouble with the applied disturbance, and a second experiment with a larger challenge for the migrating ants was performed. The results of this second experiment showed that a migration obstacle will lead to an increase in migration time as well as an increase in the number of failed reverse tandem runs (reverse tandem runs that started but never reached the old nest). However, it was shown that the number of complete reverse tandem runs (reverse tandem runs that reached the old nest) remained the same whether the obstacle was introduced or not.
ContributorsKang, Byounghoon (Author) / Pratt, Stephen (Thesis director) / Juergen, Liebig (Committee member) / Valentini, Gabriele (Committee member) / School of Life Sciences (Contributor) / Barrett, The Honors College (Contributor)
Created2019-05
134962-Thumbnail Image.png
Description
One hypothesis for why insects are smaller than vertebrates is that the blind-ended tracheal respiratory system challenges oxygen delivery for larger insects. Supporting this hypothesis, several studies have documented that larger insect species have larger gas transport structures than expected by isometric scaling. To further test this hypothesis, we performed

One hypothesis for why insects are smaller than vertebrates is that the blind-ended tracheal respiratory system challenges oxygen delivery for larger insects. Supporting this hypothesis, several studies have documented that larger insect species have larger gas transport structures than expected by isometric scaling. To further test this hypothesis, we performed the first inter-specific study of the scaling of spiracle size, using ten scarab beetle species, including some of the most massive insects. Using micro-CT, we measured the cross sectional area and depth of all eight spiracles. Areas of large spiracles in the anterior portion of the animal showed hypermetric scaling, varying approximately with mass^0.8. However, because diffusive capacities scaled with lower slopes than metabolic rates, larger beetles had a 10-fold higher required PO2 gradient across the spiracles to sustain oxygen consumption by diffusion. Despite this trend, calculations suggest that large beetles can exchange oxygen by diffusion across the spiracles at rest, but likely no beetles can do so during flight. Advective capacities through the spiracles scale with mass^1.8, suggestive of a switch toward greater use of convection and/or reduced required pressures in larger beetles.
ContributorsWagner, Julian Morgan (Author) / Harrison, Jon F. (Thesis director) / VandenBrooks, John (Committee member) / Miller, Laura (Committee member) / School of Mathematical and Statistical Sciences (Contributor) / School of Life Sciences (Contributor) / Barrett, The Honors College (Contributor)
Created2017-05
147633-Thumbnail Image.png
Description

All organisms perform best at a balanced point of intake where nutrients are ingested in specific amounts to confer optimal performance. However, when faced with limited nutrient availability, organisms are forced to make decisions which prioritize intake of certain macronutrients. While intake regulation has been more thoroughly studied in omnivores

All organisms perform best at a balanced point of intake where nutrients are ingested in specific amounts to confer optimal performance. However, when faced with limited nutrient availability, organisms are forced to make decisions which prioritize intake of certain macronutrients. While intake regulation has been more thoroughly studied in omnivores and carnivores, no research exists regarding lipid regulation in generalist herbivores. Traditionally, proteins and carbohydrates were thought to be the most important macronutrient for herbivore intake; however the large differences in lipid nutritional content between different plant species offers lots of potential for regulation of an important macronutrient. We studied whether generalist herbivores can regulate lipid intake, using the migratory locust (Locusta migratoria). Though herbivore protein and carbohydrate intake is well studied, less research studies regulation of lipid intake. We tested this by offering choice diets of varying carbohydrate and lipid content makeup and measuring consumption of each diet choice to determine overall carbohydrate and lipid intake. Four different lipid sources were used in order to control for taste or texture related confounds; canola oil, sunflower oil, grapeseed oil, and a lab designed synthetic oil based on the four most abundant fatty acids in common plant oils. On three out of four diet sources, groups evidences strong regulation of narrow intake target, with little disparity in overall intake of carbohydrate and lipid content between various choice diet treatments. Groups feeding on canola oil and sunflower oil based diets displayed the best regulation based on their having small disparities in intake between treatments, while those feeding on grapeseed oil based diets displayed wide variation in feeding behavior between treatments. Groups feeding on the synthetic oil based diet choice unexpectedly consumed much more carbohydrates than lipids when compared to all other groups. In conclusion, generalist herbivores are capable of regulating lipid intake.

ContributorsChahal, Aunmolpreet Singh (Author) / Harrison, Jon (Thesis director) / Talal, Stav (Committee member) / Department of Psychology (Contributor) / School of Life Sciences (Contributor) / Barrett, The Honors College (Contributor)
Created2021-05
165863-Thumbnail Image.png
Description
Forensic entomology is the use of insects in legal investigations, and relies heavily upon calculating the time of colonization (TOC) of insects on remains using temperature-dependent growth rates. If a body is exposed to temperatures that exceed an insect’s critical limit, TOC calculations could be severely affected. The determination of

Forensic entomology is the use of insects in legal investigations, and relies heavily upon calculating the time of colonization (TOC) of insects on remains using temperature-dependent growth rates. If a body is exposed to temperatures that exceed an insect’s critical limit, TOC calculations could be severely affected. The determination of critical thermal limits of forensically-relevant insects is crucial, as their presence or absence could alter the overall postmortem interval (PMI) calculation. This study focuses on the larvae of Phormia regina (Meigen) (Diptera: Calliphoridae), a forensically relevant blow fly common across North America. Three populations were examined (Arizona, Colorado, and New Jersey), and five day old larvae were exposed to one of two temperatures, 39℃ or 45℃, for five hours. Across all colonies, the survival rate was lower at 45℃ than 39℃, in both larval and emerged adult stages. The Arizona colony experienced a harsher drop in survival rates at 45℃ than either the Colorado or New Jersey colonies. This research suggests that the range of 39℃ - 45℃ approaches the critical thermal limit for P. regina, but does not yet exhibit a near or complete failure of survivorship that a critical temperature would cause at this duration of time. However, there is opportunity for further studies to examine this critical temperature by investigating other temperatures within the 39℃ - 45℃ range and at longer durations of time in these temperatures.
ContributorsMcNeil, Tara (Author) / Weidner, Lauren (Thesis director) / Meeds, Andrew (Committee member) / Barrett, The Honors College (Contributor) / School of Humanities, Arts, and Cultural Studies (Contributor) / School of Mathematical and Natural Sciences (Contributor)
Created2022-05