Matching Items (5)
Filtering by

Clear all filters

132857-Thumbnail Image.png
Description
Predictive analytics have been used in a wide variety of settings, including healthcare,
sports, banking, and other disciplines. We use predictive analytics and modeling to
determine the impact of certain factors that increase the probability of a successful
fourth down conversion in the Power 5 conferences. The logistic regression models

Predictive analytics have been used in a wide variety of settings, including healthcare,
sports, banking, and other disciplines. We use predictive analytics and modeling to
determine the impact of certain factors that increase the probability of a successful
fourth down conversion in the Power 5 conferences. The logistic regression models
predict the likelihood of going for fourth down with a 64% or more probability based on
2015-17 data obtained from ESPN’s college football API. Offense type though important
but non-measurable was incorporated as a random effect. We found that distance to go,
play type, field position, and week of the season were key leading covariates in
predictability. On average, our model performed as much as 14% better than coaches
in 2018.
ContributorsBlinkoff, Joshua Ian (Co-author) / Voeller, Michael (Co-author) / Wilson, Jeffrey (Thesis director) / Graham, Scottie (Committee member) / Dean, W.P. Carey School of Business (Contributor) / Department of Information Systems (Contributor) / Department of Management and Entrepreneurship (Contributor) / Barrett, The Honors College (Contributor)
Created2019-05
132858-Thumbnail Image.png
Description
Predictive analytics have been used in a wide variety of settings, including healthcare, sports, banking, and other disciplines. We use predictive analytics and modeling to determine the impact of certain factors that increase the probability of a successful fourth down conversion in the Power 5 conferences. The logistic regression models

Predictive analytics have been used in a wide variety of settings, including healthcare, sports, banking, and other disciplines. We use predictive analytics and modeling to determine the impact of certain factors that increase the probability of a successful fourth down conversion in the Power 5 conferences. The logistic regression models predict the likelihood of going for fourth down with a 64% or more probability based on 2015-17 data obtained from ESPN’s college football API. Offense type though important but non-measurable was incorporated as a random effect. We found that distance to go, play type, field position, and week of the season were key leading covariates in predictability. On average, our model performed as much as 14% better than coaches in 2018.
ContributorsVoeller, Michael Jeffrey (Co-author) / Blinkoff, Josh (Co-author) / Wilson, Jeffrey (Thesis director) / Graham, Scottie (Committee member) / Department of Information Systems (Contributor) / Department of Finance (Contributor) / Barrett, The Honors College (Contributor)
Created2019-05
147645-Thumbnail Image.png
Description

We attempted to apply a novel approach to stock market predictions. The Logistic Regression machine learning algorithm (Joseph Berkson) was applied to analyze news article headlines as represented by a bag-of-words (tri-gram and single-gram) representation in an attempt to predict the trends of stock prices based on the Dow Jones

We attempted to apply a novel approach to stock market predictions. The Logistic Regression machine learning algorithm (Joseph Berkson) was applied to analyze news article headlines as represented by a bag-of-words (tri-gram and single-gram) representation in an attempt to predict the trends of stock prices based on the Dow Jones Industrial Average. The results showed that a tri-gram bag led to a 49% trend accuracy, a 1% increase when compared to the single-gram representation’s accuracy of 48%.

ContributorsBarolli, Adeiron (Author) / Jimenez Arista, Laura (Thesis director) / Wilson, Jeffrey (Committee member) / School of Life Sciences (Contributor) / Barrett, The Honors College (Contributor)
Created2021-05
Description

Until the Supreme Court’s landmark decision in National Collegiate Athletics Association (NCAA) vs. Alston, student-athletes were not allowed to be compensated for the millions of dollars in revenue they generate for universities. While universities cannot directly pay student-athletes, student-athletes can now make money based off their name, image, and likeness

Until the Supreme Court’s landmark decision in National Collegiate Athletics Association (NCAA) vs. Alston, student-athletes were not allowed to be compensated for the millions of dollars in revenue they generate for universities. While universities cannot directly pay student-athletes, student-athletes can now make money based off their name, image, and likeness (NIL). NIL legislation has the potential (and has begun to) change college recruiting with the transfer portal and free agency landscape. Now, schools can bake NIL connections into their recruiting pitch, creating a recruiting renaissance. This research is an empirical study to determine the factors that contribute to an athlete’s NIL valuation and earnings. A hierarchical mixed-model analysis run in SAS also is used to analyze the data. The significance of this study includes providing schools and athletes with vital information pertaining to their fiscal valuation during the recruiting process. The findings can help families and student athletes to better estimate expected NIL earnings.

ContributorsMercado, Erik (Author) / Wilson, Jeffrey (Thesis director) / McCreless, Tamuchin (Committee member) / Barrett, The Honors College (Contributor) / Department of Information Systems (Contributor) / Dean, W.P. Carey School of Business (Contributor) / Department of Economics (Contributor)
Created2023-05
158282-Thumbnail Image.png
Description
Whilst linear mixed models offer a flexible approach to handle data with multiple sources of random variability, the related hypothesis testing for the fixed effects often encounters obstacles when the sample size is small and the underlying distribution for the test statistic is unknown. Consequently, five methods of denominator degrees

Whilst linear mixed models offer a flexible approach to handle data with multiple sources of random variability, the related hypothesis testing for the fixed effects often encounters obstacles when the sample size is small and the underlying distribution for the test statistic is unknown. Consequently, five methods of denominator degrees of freedom approximations (residual, containment, between-within, Satterthwaite, Kenward-Roger) are developed to overcome this problem. This study aims to evaluate the performance of these five methods with a mixed model consisting of random intercept and random slope. Specifically, simulations are conducted to provide insights on the F-statistics, denominator degrees of freedom and p-values each method gives with respect to different settings of the sample structure, the fixed-effect slopes and the missing-data proportion. The simulation results show that the residual method performs the worst in terms of F-statistics and p-values. Also, Satterthwaite and Kenward-Roger methods tend to be more sensitive to the change of designs. The Kenward-Roger method performs the best in terms of F-statistics when the null hypothesis is true.
ContributorsHuang, Ping-Chieh (Author) / Reiser, Mark R. (Thesis advisor) / Kao, Ming-Hung (Committee member) / Wilson, Jeffrey (Committee member) / Arizona State University (Publisher)
Created2020