Matching Items (12)
Filtering by

Clear all filters

152048-Thumbnail Image.png
Description
A tiling is a collection of vertex disjoint subgraphs called tiles. If the tiles are all isomorphic to a graph $H$ then the tiling is an $H$-tiling. If a graph $G$ has an $H$-tiling which covers all of the vertices of $G$ then the $H$-tiling is a perfect $H$-tiling or

A tiling is a collection of vertex disjoint subgraphs called tiles. If the tiles are all isomorphic to a graph $H$ then the tiling is an $H$-tiling. If a graph $G$ has an $H$-tiling which covers all of the vertices of $G$ then the $H$-tiling is a perfect $H$-tiling or an $H$-factor. A goal of this study is to extend theorems on sufficient minimum degree conditions for perfect tilings in graphs to directed graphs. Corrádi and Hajnal proved that every graph $G$ on $3k$ vertices with minimum degree $delta(G)ge2k$ has a $K_3$-factor, where $K_s$ is the complete graph on $s$ vertices. The following theorem extends this result to directed graphs: If $D$ is a directed graph on $3k$ vertices with minimum total degree $delta(D)ge4k-1$ then $D$ can be partitioned into $k$ parts each of size $3$ so that all of parts contain a transitive triangle and $k-1$ of the parts also contain a cyclic triangle. The total degree of a vertex $v$ is the sum of $d^-(v)$ the in-degree and $d^+(v)$ the out-degree of $v$. Note that both orientations of $C_3$ are considered: the transitive triangle and the cyclic triangle. The theorem is best possible in that there are digraphs that meet the minimum degree requirement but have no cyclic triangle factor. The possibility of added a connectivity requirement to ensure a cycle triangle factor is also explored. Hajnal and Szemerédi proved that if $G$ is a graph on $sk$ vertices and $delta(G)ge(s-1)k$ then $G$ contains a $K_s$-factor. As a possible extension of this celebrated theorem to directed graphs it is proved that if $D$ is a directed graph on $sk$ vertices with $delta(D)ge2(s-1)k-1$ then $D$ contains $k$ disjoint transitive tournaments on $s$ vertices. We also discuss tiling directed graph with other tournaments. This study also explores minimum total degree conditions for perfect directed cycle tilings and sufficient semi-degree conditions for a directed graph to contain an anti-directed Hamilton cycle. The semi-degree of a vertex $v$ is $min{d^+(v), d^-(v)}$ and an anti-directed Hamilton cycle is a spanning cycle in which no pair of consecutive edges form a directed path.
ContributorsMolla, Theodore (Author) / Kierstead, Henry A (Thesis advisor) / Czygrinow, Andrzej (Committee member) / Fishel, Susanna (Committee member) / Hurlbert, Glenn (Committee member) / Spielberg, Jack (Committee member) / Arizona State University (Publisher)
Created2013
151429-Thumbnail Image.png
Description
A central concept of combinatorics is partitioning structures with given constraints. Partitions of on-line posets and on-line graphs, which are dynamic versions of the more familiar static structures posets and graphs, are examined. In the on-line setting, vertices are continually added to a poset or graph while a chain partition

A central concept of combinatorics is partitioning structures with given constraints. Partitions of on-line posets and on-line graphs, which are dynamic versions of the more familiar static structures posets and graphs, are examined. In the on-line setting, vertices are continually added to a poset or graph while a chain partition or coloring (respectively) is maintained. %The optima of the static cases cannot be achieved in the on-line setting. Both upper and lower bounds for the optimum of the number of chains needed to partition a width $w$ on-line poset exist. Kierstead's upper bound of $\frac{5^w-1}{4}$ was improved to $w^{14 \lg w}$ by Bosek and Krawczyk. This is improved to $w^{3+6.5 \lg w}$ by employing the First-Fit algorithm on a family of restricted posets (expanding on the work of Bosek and Krawczyk) . Namely, the family of ladder-free posets where the $m$-ladder is the transitive closure of the union of two incomparable chains $x_1\le\dots\le x_m$, $y_1\le\dots\le y_m$ and the set of comparabilities $\{x_1\le y_1,\dots, x_m\le y_m\}$. No upper bound on the number of colors needed to color a general on-line graph exists. To lay this fact plain, the performance of on-line coloring of trees is shown to be particularly problematic. There are trees that require $n$ colors to color on-line for any positive integer $n$. Furthermore, there are trees that usually require many colors to color on-line even if they are presented without any particular strategy. For restricted families of graphs, upper and lower bounds for the optimum number of colors needed to maintain an on-line coloring exist. In particular, circular arc graphs can be colored on-line using less than 8 times the optimum number from the static case. This follows from the work of Pemmaraju, Raman, and Varadarajan in on-line coloring of interval graphs.
ContributorsSmith, Matthew Earl (Author) / Kierstead, Henry A (Thesis advisor) / Colbourn, Charles (Committee member) / Czygrinow, Andrzej (Committee member) / Fishel, Susanna (Committee member) / Hurlbert, Glenn (Committee member) / Arizona State University (Publisher)
Created2012
150038-Thumbnail Image.png
Description
In a large network (graph) it would be desirable to guarantee the existence of some local property based only on global knowledge of the network. Consider the following classical example: how many connections are necessary to guarantee that the network contains three nodes which are pairwise adjacent? It turns out

In a large network (graph) it would be desirable to guarantee the existence of some local property based only on global knowledge of the network. Consider the following classical example: how many connections are necessary to guarantee that the network contains three nodes which are pairwise adjacent? It turns out that more than n^2/4 connections are needed, and no smaller number will suffice in general. Problems of this type fall into the category of ``extremal graph theory.'' Generally speaking, extremal graph theory is the study of how global parameters of a graph are related to local properties. This dissertation deals with the relationship between minimum degree conditions of a host graph G and the property that G contains a specified spanning subgraph (or class of subgraphs). The goal is to find the optimal minimum degree which guarantees the existence of a desired spanning subgraph. This goal is achieved in four different settings, with the main tools being Szemeredi's Regularity Lemma; the Blow-up Lemma of Komlos, Sarkozy, and Szemeredi; and some basic probabilistic techniques.
ContributorsDeBiasio, Louis (Author) / Kierstead, Henry A (Thesis advisor) / Czygrinow, Andrzej (Thesis advisor) / Hurlbert, Glenn (Committee member) / Kadell, Kevin (Committee member) / Fishel, Susanna (Committee member) / Arizona State University (Publisher)
Created2011
156583-Thumbnail Image.png
Description
Since the seminal work of Tur ́an, the forbidden subgraph problem has been among the central questions in extremal graph theory. Let ex(n;F) be the smallest number m such that any graph on n vertices with m edges contains F as a subgraph. Then the forbidden subgraph problem asks to

Since the seminal work of Tur ́an, the forbidden subgraph problem has been among the central questions in extremal graph theory. Let ex(n;F) be the smallest number m such that any graph on n vertices with m edges contains F as a subgraph. Then the forbidden subgraph problem asks to find ex(n; F ) for various graphs F . The question can be further generalized by asking for the extreme values of other graph parameters like minimum degree, maximum degree, or connectivity. We call this type of question a Tura ́n-type problem. In this thesis, we will study Tura ́n-type problems and their variants for graphs and hypergraphs.

Chapter 2 contains a Tura ́n-type problem for cycles in dense graphs. The main result in this chapter gives a tight bound for the minimum degree of a graph which guarantees existence of disjoint cycles in the case of dense graphs. This, in particular, answers in the affirmative a question of Faudree, Gould, Jacobson and Magnant in the case of dense graphs.

In Chapter 3, similar problems for trees are investigated. Recently, Faudree, Gould, Jacobson and West studied the minimum degree conditions for the existence of certain spanning caterpillars. They proved certain bounds that guarantee existence of spanning caterpillars. The main result in Chapter 3 significantly improves their result and answers one of their questions by proving a tight minimum degree bound for the existence of such structures.

Chapter 4 includes another Tur ́an-type problem for loose paths of length three in a 3-graph. As a corollary, an upper bound for the multi-color Ramsey number for the loose path of length three in a 3-graph is achieved.
ContributorsYie, Jangwon (Author) / Czygrinow, Andrzej (Thesis advisor) / Kierstead, Henry (Committee member) / Colbourn, Charles (Committee member) / Fishel, Susanna (Committee member) / Spielberg, John (Committee member) / Arizona State University (Publisher)
Created2018
136340-Thumbnail Image.png
Description
This paper focuses on the Szemerédi regularity lemma, a result in the field of extremal graph theory. The lemma says that every graph can be partitioned into bounded equal parts such that most edges of the graph span these partitions, and these edges are distributed in a fairly uniform way.

This paper focuses on the Szemerédi regularity lemma, a result in the field of extremal graph theory. The lemma says that every graph can be partitioned into bounded equal parts such that most edges of the graph span these partitions, and these edges are distributed in a fairly uniform way. Definitions and notation will be established, leading to explorations of three proofs of the regularity lemma. These are a version of the original proof, a Pythagoras proof utilizing elemental geometry, and a proof utilizing concepts of spectral graph theory. This paper is intended to supplement the proofs with background information about the concepts utilized. Furthermore, it is the hope that this paper will serve as another resource for students and others to begin study of the regularity lemma.
ContributorsByrne, Michael John (Author) / Czygrinow, Andrzej (Thesis director) / Kierstead, Hal (Committee member) / Barrett, The Honors College (Contributor) / School of Mathematical and Statistical Sciences (Contributor) / Department of Chemistry and Biochemistry (Contributor)
Created2015-05
149332-Thumbnail Image.png
Description
Graph coloring is about allocating resources that can be shared except where there are certain pairwise conflicts between recipients. The simplest coloring algorithm that attempts to conserve resources is called first fit. Interval graphs are used in models for scheduling (in computer science and operations research) and in biochemistry for

Graph coloring is about allocating resources that can be shared except where there are certain pairwise conflicts between recipients. The simplest coloring algorithm that attempts to conserve resources is called first fit. Interval graphs are used in models for scheduling (in computer science and operations research) and in biochemistry for one-dimensional molecules such as genetic material. It is not known precisely how much waste in the worst case is due to the first-fit algorithm for coloring interval graphs. However, after decades of research the range is narrow. Kierstead proved that the performance ratio R is at most 40. Pemmaraju, Raman, and Varadarajan proved that R is at most 10. This can be improved to 8. Witsenhausen, and independently Chrobak and Slusarek, proved that R is at least 4. Slusarek improved this to 4.45. Kierstead and Trotter extended the method of Chrobak and Slusarek to one good for a lower bound of 4.99999 or so. The method relies on number sequences with a certain property of order. It is shown here that each sequence considered in the construction satisfies a linear recurrence; that R is at least 5; that the Fibonacci sequence is in some sense minimally useless for the construction; and that the Fibonacci sequence is a point of accumulation in some space for the useful sequences of the construction. Limitations of all earlier constructions are revealed.
ContributorsSmith, David A. (Author) / Kierstead, Henry A. (Thesis advisor) / Czygrinow, Andrzej (Committee member) / Gelb, Anne (Committee member) / Hurlbert, Glenn H. (Committee member) / Kadell, Kevin W. J. (Committee member) / Arizona State University (Publisher)
Created2010
ContributorsGasic, Lauren (Performer) / Fanning, Patrick (Performer) / Sims, John (Performer) / Eary, Jacob (Performer) / Bryce, Michael (Performer) / ASU Library. Music Library (Publisher)
Created2011-04-02
ContributorsPannell, Judith (Performer) / Fanning, Patrick (Performer) / ASU Library. Music Library (Publisher)
Created2008-04-14
ContributorsCarpenter, D. Justin (Performer) / Fanning, Patrick (Performer) / ASU Library. Music Library (Publisher)
Created2010-10-01
158314-Thumbnail Image.png
Description
The chromatic number $\chi(G)$ of a graph $G=(V,E)$ is the minimum

number of colors needed to color $V(G)$ such that no adjacent vertices

receive the same color. The coloring number $\col(G)$ of a graph

$G$ is the minimum number $k$ such that there exists a linear ordering

of $V(G)$ for which each vertex has

The chromatic number $\chi(G)$ of a graph $G=(V,E)$ is the minimum

number of colors needed to color $V(G)$ such that no adjacent vertices

receive the same color. The coloring number $\col(G)$ of a graph

$G$ is the minimum number $k$ such that there exists a linear ordering

of $V(G)$ for which each vertex has at most $k-1$ backward neighbors.

It is well known that the coloring number is an upper bound for the

chromatic number. The weak $r$-coloring number $\wcol_{r}(G)$ is

a generalization of the coloring number, and it was first introduced

by Kierstead and Yang \cite{77}. The weak $r$-coloring number $\wcol_{r}(G)$

is the minimum integer $k$ such that for some linear ordering $L$

of $V(G)$ each vertex $v$ can reach at most $k-1$ other smaller

vertices $u$ (with respect to $L$) with a path of length at most

$r$ and $u$ is the smallest vertex in the path. This dissertation proves that $\wcol_{2}(G)\le23$ for every planar graph $G$.

The exact distance-$3$ graph $G^{[\natural3]}$ of a graph $G=(V,E)$

is a graph with $V$ as its set of vertices, and $xy\in E(G^{[\natural3]})$

if and only if the distance between $x$ and $y$ in $G$ is $3$.

This dissertation improves the best known upper bound of the

chromatic number of the exact distance-$3$ graphs $G^{[\natural3]}$

of planar graphs $G$, which is $105$, to $95$. It also improves

the best known lower bound, which is $7$, to $9$.

A class of graphs is nowhere dense if for every $r\ge 1$ there exists $t\ge 1$ such that no graph in the class contains a topological minor of the complete graph $K_t$ where every edge is subdivided at most $r$ times. This dissertation gives a new characterization of nowhere dense classes using generalized notions of the domination number.
ContributorsAlmulhim, Ahlam (Author) / Kierstead, Henry (Thesis advisor) / Sen, Arunabha (Committee member) / Richa, Andrea (Committee member) / Czygrinow, Andrzej (Committee member) / Fishel, Susanna (Committee member) / Arizona State University (Publisher)
Created2020