Matching Items (3)
Filtering by

Clear all filters

135268-Thumbnail Image.png
Description
Malware that perform identity theft or steal bank credentials are becoming increasingly common and can cause millions of dollars of damage annually. A large area of research focus is the automated detection and removal of such malware, due to their large impact on millions of people each year. Such a

Malware that perform identity theft or steal bank credentials are becoming increasingly common and can cause millions of dollars of damage annually. A large area of research focus is the automated detection and removal of such malware, due to their large impact on millions of people each year. Such a detector will be beneficial to any industry that is regularly the target of malware, such as the financial sector. Typical detection approaches such as those found in commercial anti-malware software include signature-based scanning, in which malware executables are identified based on a unique signature or fingerprint developed for that malware. However, as malware authors continue to modify and obfuscate their malware, heuristic detection is increasingly popular, in which the behaviors of the malware are identified and patterns recognized. We explore a malware analysis and classification framework using machine learning to train classifiers to distinguish between malware and benign programs based upon their features and behaviors. Using both decision tree learning and support vector machines as classifier models, we obtained overall classification accuracies of around 80%. Due to limitations primarily including the usage of a small data set, our approach may not be suitable for practical classification of malware and benign programs, as evident by a high error rate.
ContributorsAnwar, Sajid (Co-author) / Chan, Tsz (Co-author) / Ahn, Gail-Joon (Thesis director) / Zhao, Ziming (Committee member) / Computer Science and Engineering Program (Contributor) / Barrett, The Honors College (Contributor)
Created2016-05
155054-Thumbnail Image.png
Description
Software-Defined Networking (SDN) is an emerging network paradigm that decouples the control plane from the data plane, which allows network administrators to consolidate common network services into a centralized module named SDN controller. Applications’ policies are transformed into standardized network rules in the data plane via SDN controller. Even though

Software-Defined Networking (SDN) is an emerging network paradigm that decouples the control plane from the data plane, which allows network administrators to consolidate common network services into a centralized module named SDN controller. Applications’ policies are transformed into standardized network rules in the data plane via SDN controller. Even though this centralization brings a great flexibility and programmability to the network, network rules generated by SDN applications cannot be trusted because there may exist malicious SDN applications, and insecure network flows can be made due to complex relations across network rules. In this dissertation, I investigate how to identify and resolve these security violations in SDN caused by the combination of network rules and applications’ policies. To this end, I propose a systematic policy management framework that better protects SDN itself and hardens existing network defense mechanisms using SDN.

More specifically, I discuss the following four security challenges in this dissertation: (1) In SDN, generating reliable network rules is challenging because SDN applications cannot be trusted and have complicated dependencies each other. To address this problem, I analyze applications’ policies and remove those dependencies by applying grid-based policy decomposition mechanism; (2) One network rule could accidentally affect others (or by malicious users), which lead to creating of indirect security violations. I build systematic and automated tools that analyze network rules in the data plane to detect a wide range of security violations and resolve them in an automated fashion; (3) A fundamental limitation of current SDN protocol (OpenFlow) is a lack of statefulness, which is extremely important to several security applications such as stateful firewall. To bring statelessness to SDN-based environment, I come up with an innovative stateful monitoring scheme by extending existing OpenFlow specifications; (4) Existing honeynet architecture is suffering from its limited functionalities of ’data control’ and ’data capture’. To address this challenge, I design and implement an innovative next generation SDN-based honeynet architecture.
ContributorsHan, Wonkyu (Author) / Ahn, Gail-Joon (Thesis advisor) / Zhao, Ziming (Thesis advisor) / Doupe, Adam (Committee member) / Huang, Dijiang (Committee member) / Zhang, Yanchao (Committee member) / Arizona State University (Publisher)
Created2016
155726-Thumbnail Image.png
Description
Phishing is a form of online fraud where a spoofed website tries to gain access to user's sensitive information by tricking the user into believing that it is a benign website. There are several solutions to detect phishing attacks such as educating users, using blacklists or extracting phishing characteristics found

Phishing is a form of online fraud where a spoofed website tries to gain access to user's sensitive information by tricking the user into believing that it is a benign website. There are several solutions to detect phishing attacks such as educating users, using blacklists or extracting phishing characteristics found to exist in phishing attacks. In this thesis, we analyze approaches that extract features from phishing websites and train classification models with extracted feature set to classify phishing websites. We create an exhaustive list of all features used in these approaches and categorize them into 6 broader categories and 33 finer categories. We extract 59 features from the URL, URL redirects, hosting domain (WHOIS and DNS records) and popularity of the website and analyze their robustness in classifying a phishing website. Our emphasis is on determining the predictive performance of robust features. We evaluate the classification accuracy when using the entire feature set and when URL features or site popularity features are excluded from the feature set and show how our approach can be used to effectively predict specific types of phishing attacks such as shortened URLs and randomized URLs. Using both decision table classifiers and neural network classifiers, our results indicate that robust features seem to have enough predictive power to be used in practice.
ContributorsNamasivayam, Bhuvana Lalitha (Author) / Bazzi, Rida (Thesis advisor) / Zhao, Ziming (Committee member) / Liu, Huan (Committee member) / Arizona State University (Publisher)
Created2017