Matching Items (41)
148463-Thumbnail Image.png
Description

The increased shift towards environmentalism has brought notable attention to a universal excessive plastic consumption and subsequent plastic overload in landfills. Among these plastics, polyethylene terephthalate, more commonly known as PET, constitutes a large percentage of the waste that ends up in landfills. Material and chemical/thermal methods for recycling are

The increased shift towards environmentalism has brought notable attention to a universal excessive plastic consumption and subsequent plastic overload in landfills. Among these plastics, polyethylene terephthalate, more commonly known as PET, constitutes a large percentage of the waste that ends up in landfills. Material and chemical/thermal methods for recycling are both costly, and inefficient, which necessitates a more sustainable and cheaper alternative. The current study aims at fulfilling that role through genetic engineering of Bacillus subtilis with integration of genes from LCC, Ideonella sakaiensis, and Bacillus subtilis. The plasmid construction was done through restriction cloning. A recombinant plasmid for the expression of LCC was constructed, and transformed into Escherichia coli. Future experiments for this study should include redesigning of primers, with possible combination of signal peptides with genes during construct design, and more advanced assays for effective outcomes.

ContributorsKalscheur, Bethany Ann (Author) / Varman, Arul (Thesis director) / Andino, Jean (Committee member) / Chemical Engineering Program (Contributor) / Barrett, The Honors College (Contributor)
Created2021-05
Description
Based upon the idea of a "science fiction prototype" as originally designed by Brian David Johnson, Salomon’s House is a science fiction novella, written to be as scientifically accurate as possible and to present a balanced account of the potential social consequences of genetic engineering. It aims to explore the

Based upon the idea of a "science fiction prototype" as originally designed by Brian David Johnson, Salomon’s House is a science fiction novella, written to be as scientifically accurate as possible and to present a balanced account of the potential social consequences of genetic engineering. It aims to explore the answers to some core questions that have plagued scientists and philosophers alike while entertaining its readers with a punchy, character-driven narrative.
ContributorsMansfield, Izaac (Author) / Finn, Ed (Thesis director) / Frow, Emma (Committee member) / Barrett, The Honors College (Contributor) / Department of Information Systems (Contributor) / School for the Future of Innovation in Society (Contributor)
Created2023-05
189326-Thumbnail Image.png
Description
Over the past 20 years, the fields of synthetic biology and synthetic biosystems engineering have grown into mature disciplines, leading to significant breakthroughs in cancer research, diagnostics, cell-based medicines, biochemical production, etc. Application of mathematical modelling to biological and biochemical systems have not only given great insight into how these

Over the past 20 years, the fields of synthetic biology and synthetic biosystems engineering have grown into mature disciplines, leading to significant breakthroughs in cancer research, diagnostics, cell-based medicines, biochemical production, etc. Application of mathematical modelling to biological and biochemical systems have not only given great insight into how these systems function, but also have lent enough predictive power to aid in the forward-engineering of synthetic constructs. However, progress has been impeded by several modes of context-dependence unique to biological and biochemical systems that are not seen in traditional engineering disciplines, resulting in the need for lengthy design-build-test cycles before functional prototypes are generated.In this work, two of these universal modes of context dependence – resource competition and growth feedback –their effects on synthetic gene circuits and potential control mechanisms, are studied and characterized. Results demonstrate that a novel competitive control architecture can be utilized to mitigate the effects of winner-take-all resource competition (a form of context dependence where distinct gene modules influence each other by competing over a shared pool of transcriptional/translational resources) in synthetic gene circuits and restore circuits to their intended function. Application of the fluctuation-dissipation theorem and rigorous stochastic simulations demonstrate that realistic resource constraints present in cells at the transcriptional and translational levels influence noise in gene circuits in a nonmonotonic fashion, either increasing or decreasing noise depending on the transcriptional/translational capacity. Growth feedback on the other hand links circuit function to cellular growth rate via increased protein dilution rate during exponential growth phase. This in turn can result in the collapse of bistable gene circuits as the accelerated dilution rate forces switches in a high stable state to fall to a low stable state. Mathematical modelling and experimental data demonstrate that application of repressive links can insulate sensitive parts of gene circuits against growth-fluctuations and can in turn increase the robustness of multistable circuits in growth contexts. The results presented in this work aid in the accumulation of understanding of biological and biochemical context dependence, and corresponding control strategies and design principles engineers can utilize to mitigate these effects.
ContributorsStone, Austin (Author) / Tian, Xiao-jun (Thesis advisor) / Wang, Xiao (Committee member) / Smith, Barbara (Committee member) / Kuang, Yang (Committee member) / Cheng, Albert (Committee member) / Arizona State University (Publisher)
Created2023
187533-Thumbnail Image.png
Description
Clustered regularly interspace short palindromic repeats (CRISPR) and CRISPR associated (Cas) technologies have become integral to genome editing. Canonical CRISPR-Cas9 systems function as a ribonucleic acid (RNA)-guided nucleases. Single guide RNAs (sgRNA) can be easily designed to target Cas9’s nuclease activity towards protospacer deoxyribonucleic acid (DNA) sequences. The relatively ease

Clustered regularly interspace short palindromic repeats (CRISPR) and CRISPR associated (Cas) technologies have become integral to genome editing. Canonical CRISPR-Cas9 systems function as a ribonucleic acid (RNA)-guided nucleases. Single guide RNAs (sgRNA) can be easily designed to target Cas9’s nuclease activity towards protospacer deoxyribonucleic acid (DNA) sequences. The relatively ease and efficiency of CRISPR-Cas9 systems has enabled numerous technologies and DNA manipulations. Genome engineering in human cell lines is centered around the study of genetic contribution to disease phenotypes. However, canonical CRISPR-Cas9 systems are largely reliant on double stranded DNA breaks (DSBs). DSBs can induce unintended genomic changes including deletions and complex rearrangements. Likewise, DSBs can induce apoptosis and cell cycle arrest confounding applications of Cas9-based systems for disease modeling. Base editors are a novel class of nicking Cas9 engineered with a cytidine or adenosine deaminase. Base editors can install single letter DNA edits without DSBs. However, detecting single letter DNA edits is cumbersome, requiring onerous DNA isolation and sequencing, hampering experimental throughput. This document describes the creation of a fluorescent reporter system to detect Cytosine-to-Thymine (C-to-T) base editing. The fluorescent reporter utilizes an engineered blue fluorescent protein (BFP) that is converted to green fluorescent protein (GFP) upon targeted C-to-T conversion. The BFP-to-GFP conversion enables the creation of a strategy to isolate edited cell populations, termed Transient Reporter for Editing Enrichment (TREE). TREE increases the ease of optimizing base editor designs and assists in editing cell types recalcitrant to DNA editing. More recently, Prime editing has been demonstrated to introduce user defined DNA edits without the need for DSBs and donor DNA. Prime editing requires specialized prime editing guide RNAs (pegRNAs). pegRNAs are however difficult to manually design. This document describes the creation of a software tool: Prime Induced Nucleotide Engineering Creator of New Edits (PINE-CONE). PINE-CONE rapidly designs pegRNAs based off basic edit information and will assist with synthetic biology and biomedical research.
ContributorsStandage-Beier, Kylie S (Author) / Wang, Xiao (Thesis advisor) / Brafman, David A (Committee member) / Tian, Xiao-jun (Committee member) / Nielsen, David R (Committee member) / Arizona State University (Publisher)
Created2023
171614-Thumbnail Image.png
Description
Ecology has been an actively studied topic recently, along with the rapid development of human microbiota-based technology. Scientists have made remarkable progress using bioinformatics tools to identify species and analyze composition. However, a thorough understanding of interspecies interactions of microbial ecosystems is still lacking, which has been a significant obstacle

Ecology has been an actively studied topic recently, along with the rapid development of human microbiota-based technology. Scientists have made remarkable progress using bioinformatics tools to identify species and analyze composition. However, a thorough understanding of interspecies interactions of microbial ecosystems is still lacking, which has been a significant obstacle in the further development of related technologies. In this work, a genetic circuit design principle with synthetic biology approaches is developed to form two-strain microbial consortia with different inter-strain interactions. The microbial systems are well-defined and inducible. Co-culture experiment results show that our microbial consortia behave consistently with previous ecological knowledge and thus serves as excellent model systems to simulate ecosystems with similar interactions. Colony patterns also emerge when co-culturing multiple species on solid media. With the engineered microbial consortia, image-processing based methods were developed to quantify the shape of co-culture colonies and distinguish microbial consortia with different interactions. Factors that affect the population ratios were identified through induction and variations in the inoculation process. Further time-lapse experiments revealed the basic rules of colony growth, composition variation, patterning, and how spatial factors impact the co-culture colony.
ContributorsChen, Xingwen (Author) / Wang, Xiao (Thesis advisor) / Kuang, Yang (Committee member) / Tian, Xiaojun (Committee member) / Brafman, David (Committee member) / Plaisier, Christopher (Committee member) / Arizona State University (Publisher)
Created2022
171416-Thumbnail Image.png
Description
The mutual inhibition between synthetic gene circuits and cell growth produces growth feedback in the host-circuit system. Previous studies have demonstrated that the growth feedback has an marked impact on the molecular dynamics of the host-circuit system. However, the complexity of the growth feedback effect is not fully understood. A

The mutual inhibition between synthetic gene circuits and cell growth produces growth feedback in the host-circuit system. Previous studies have demonstrated that the growth feedback has an marked impact on the molecular dynamics of the host-circuit system. However, the complexity of the growth feedback effect is not fully understood. A theoretical framework was developed to study the dynamics of the coupling between growth feedback and synthetic gene circuits. The study’s results reveal three major points about the impact of growth feedback. First, a nonlinear emergent behavior mediated by growth feedback. The unexpected behavior depends on the dynamic ribosome allocation between gene circuit expression and host cell growth. Second, the emergence and loss of unexpected qualitative states on the host-circuit system generated by ultrasensitive growth feedback. Third, the growth feedback-induced cooperativity behavior in synthetic gene modules competing for resources. In addition, growth feedback attenuated the winner-takes-all rules on resource competition between the two self-activating modules. These results demonstrate that growth feedback plays an important role in the host-circuit system’s molecular dynamics. Characterizing general principles from the effect of growth facilitates the ability to minimize or even harness unexpected gene expression behaviors derived from the effect of growth feedback.
ContributorsMelendez-Alvarez, Juan Ramon (Author) / Tian, Xiaojun (Thesis advisor) / Wang, Xiao (Committee member) / Kuang, Yang (Committee member) / Arizona State University (Publisher)
Created2022
157920-Thumbnail Image.png
Description
Fusion proteins that specifically interact with biochemical marks on chromosomes represent a new class of synthetic transcriptional regulators that decode cell state information rather than deoxyribose nucleic acid (DNA) sequences. In multicellular organisms, information relevant to cell state, tissue identity, and oncogenesis is often encoded as biochemical modifications of histones,

Fusion proteins that specifically interact with biochemical marks on chromosomes represent a new class of synthetic transcriptional regulators that decode cell state information rather than deoxyribose nucleic acid (DNA) sequences. In multicellular organisms, information relevant to cell state, tissue identity, and oncogenesis is often encoded as biochemical modifications of histones, which are bound to DNA in eukaryotic nuclei and regulate gene expression states. In 2011, Haynes et al. showed that a synthetic regulator called the Polycomb chromatin Transcription Factor (PcTF), a fusion protein that binds methylated histones, reactivated an artificially-silenced luciferase reporter gene. These synthetic transcription activators are derived from the polycomb repressive complex (PRC) and associate with the epigenetic silencing mark H3K27me3 to reactivate the expression of silenced genes. It is demonstrated here that the duration of epigenetic silencing does not perturb reactivation via PcTF fusion proteins. After 96 hours PcTF shows the strongest reactivation activity. A variant called Pc2TF, which has roughly double the affinity for H3K27me3 in vitro, reactivated the silenced luciferase gene by at least 2-fold in living cells.
ContributorsVargas, Daniel A. (Author) / Haynes, Karmella (Thesis advisor) / Wang, Xiao (Committee member) / Mills, Jeremy (Committee member) / Arizona State University (Publisher)
Created2019
157621-Thumbnail Image.png
Description
The fundamental building blocks for constructing complex synthetic gene networks are effective biological parts with wide dynamic range, low crosstalk, and modularity. RNA-based components are promising sources of such parts since they can provide regulation at the level of transcription and translation and their predictable base pairing properties enable large

The fundamental building blocks for constructing complex synthetic gene networks are effective biological parts with wide dynamic range, low crosstalk, and modularity. RNA-based components are promising sources of such parts since they can provide regulation at the level of transcription and translation and their predictable base pairing properties enable large libraries to be generated through in silico design. This dissertation studies two different approaches for initiating interactions between RNA molecules to implement RNA-based components that achieve translational regulation. First, single-stranded domains known as toeholds were employed for detection of the highly prevalent foodborne pathogen norovirus. Toehold switch riboregulators activated by trigger RNAs from the norovirus RNA genome are designed, validated, and coupled with paper-based cell-free transcription-translation systems. Integration of paper-based reactions with synbody enrichment and isothermal RNA amplification enables as few as 160 copies/mL of norovirus from clinical samples to be detected in reactions that do not require sophisticated equipment and can be read directly by eye. Second, a new type of riboregulator that initiates RNA-RNA interactions through the loop portions of RNA stem-loop structures was developed. These loop-initiated RNA activators (LIRAs) provide multiple advantages compared to toehold-based riboregulators, exhibiting ultralow signal leakage in vivo, lacking any trigger RNA sequence constraints, and appending no additional residues to the output protein. Harnessing LIRAs as modular parts, logic gates that exploit loop-mediated control of mRNA folding state to implement AND and OR operations with up to three sequence-independent input RNAs were constructed. LIRA circuits can also be ported to paper-based cell-free reactions to implement portable systems with molecular computing and sensing capabilities. LIRAs can detect RNAs from a variety of different pathogens, such as HIV, Zika, dengue, yellow fever, and norovirus, and after coupling to isothermal amplification reactions, provide visible test results down to concentrations of 20 aM (12 RNA copies/µL). And the logic functionality of LIRA circuits can be used to specifically identify different HIV strains and influenza A subtypes. These findings demonstrate that toehold- and loop-mediated RNA-RNA interactions are both powerful strategies for implementing RNA-based computing systems for intracellular and diagnostic applications.
ContributorsMA, DUO (Author) / Green, Alexander (Thesis advisor) / Mangone, Marco (Committee member) / Liu, Yan (Committee member) / Arizona State University (Publisher)
Created2019
158672-Thumbnail Image.png
Description
The CRISPR/Cas9 gene-editing tool is currently in clinical trials as the excitement about its therapeutic potential is exponentially growing. However, many of the developed CRISPR based genome engineering methods cannot be broadly translated in clinical settings due to their unintended consequences. These consequences, such as immune reactions to CRISPR, immunogenic

The CRISPR/Cas9 gene-editing tool is currently in clinical trials as the excitement about its therapeutic potential is exponentially growing. However, many of the developed CRISPR based genome engineering methods cannot be broadly translated in clinical settings due to their unintended consequences. These consequences, such as immune reactions to CRISPR, immunogenic adverse events following receiving of adeno-associated virus (AAV) as one of the clinically relevant delivery agents, and CRISPR off-target activity in the genome, reinforces the necessity for improving the safety of CRISPR and the gene therapy vehicles. Research into designing more advanced CRISPR systems will allow for the increased ability of editing efficiency and safety for human applications. This work 1- develops strategies for decreasing the immunogenicity of CRISPR/Cas9 system components and improving the safety of CRISPR-based gene therapies for human subjects, 2- demonstrates the utility of this system in vivo for transient repression of components of innate and adaptive immunity, and 3- examines an inducible all-in-one CRISPR-based control switch to pave the way for controllable CRISPR-based therapies.
ContributorsMoghadam, Farzaneh (Author) / Kiani, Samira (Thesis advisor) / LaBaer, Josh (Committee member) / Ebrahimkhani, Mo (Committee member) / Arizona State University (Publisher)
Created2020
158747-Thumbnail Image.png
Description
Gene circuit engineering facilitates the discovery and understanding of fundamental biology and has been widely used in various biological applications. In synthetic biology, gene circuits are often constructed by two main strategies: either monocistronic or polycistronic constructions. The Latter architecture can be commonly found in prokaryotes, eukaryotes, and viruses and

Gene circuit engineering facilitates the discovery and understanding of fundamental biology and has been widely used in various biological applications. In synthetic biology, gene circuits are often constructed by two main strategies: either monocistronic or polycistronic constructions. The Latter architecture can be commonly found in prokaryotes, eukaryotes, and viruses and has been largely applied in gene circuit engineering. In this work, the effect of adjacent genes and noncoding regions are systematically investigated through the construction of batteries of gene circuits in diverse scenarios. Data-driven analysis yields a protein expression metric that strongly correlates with the features of adjacent transcriptional regions (ATRs). This novel mathematical tool helps the guide for circuit construction and has the implication for the design of synthetic ATRs to tune gene expression, illustrating its potential to facilitate engineering complex gene networks. The ability to tune RNA dynamics is greatly needed for biotech applications, including therapeutics and diagnostics. Diverse methods have been developed to tune gene expression through transcriptional or translational manipulation. Control of RNA stability/degradation is often overlooked and can be the lightweight alternative to regulate protein yields. To further extend the utility of engineered ATRs to regulate gene expression, a library of RNA modules named degradation-tuning RNAs (dtRNAs) are designed with the ability to form specific 5’ secondary structures prior to RBS. These modules can modulate transcript stability while having a minimal interference on translation initiation. Optimization of their functional structural features enables gene expression level to be tuned over a wide dynamic range. These engineered dtRNAs are capable of regulating gene circuit dynamics as well as noncoding RNA levels and can be further expanded into cell-free system for gene expression control in vitro. Finally, integrating dtRNA with synthetic toehold sensor enables improved paper-based viral diagnostics, illustrating the potential of using synthetic dtRNAs for biomedical applications.
ContributorsZhang, Qi (Author) / Wang, Xiao (Thesis advisor) / Green, Alexander (Committee member) / Brafman, David (Committee member) / Tian, Xiaojun (Committee member) / Plaisier, Christopher (Committee member) / Arizona State University (Publisher)
Created2020