Matching Items (5)
Filtering by

Clear all filters

133539-Thumbnail Image.png
Description
Social media has forced us to more publicly define who we should be apart from who we are. In the age of technology, there is an increased societal pressure to hide imperfection - to keep the raw, sensitive aspects of our lives to ourselves. For my honors thesis/creative project, I

Social media has forced us to more publicly define who we should be apart from who we are. In the age of technology, there is an increased societal pressure to hide imperfection - to keep the raw, sensitive aspects of our lives to ourselves. For my honors thesis/creative project, I chose to explore the disparities between the lives we share in person and the lives we share online. As a BFA student in Ceramics, I wanted to use the skills and techniques I've acquired throughout my years in college to visually represent my personal observations of social media use, identity in the age of technology, and the taboo of imperfection. My motivation for this project was to question, what is reality? I believe social media has led to an environment of under sharing. We share what's easy, what's happy, what's comfortable. Either that, or we focus on the negative, discounting the blessings and privilege we are so lucky to have. Positive or negative, this platform is a shallow way to communicate and understand humanity. There is always some underlying insecurity, anxiety, or tragedy behind every success or celebration. After reflecting on these insights, I continued my research by exploring aspects of different imagery, form, and function in clay. Ultimately, I decided to create a series of four interactive head sculptures. My main objectives for these sculptures were to embody issues of mental health, reference social media, and to have the viewer interact with the pieces.
ContributorsMegehee, Mary Grace (Author) / Beiner, Susan (Thesis director) / Chung, Samuel (Committee member) / School of Art (Contributor) / Barrett, The Honors College (Contributor)
Created2018-05
155475-Thumbnail Image.png
Description
In wild birds, the stress response can inhibit the activity of the innate immune system, which serves as the first line of defense against pathogens. By elucidating the mechanisms which regulate the interaction between stress and innate immunity, researchers may be able to predict when birds experience increased susceptibility to

In wild birds, the stress response can inhibit the activity of the innate immune system, which serves as the first line of defense against pathogens. By elucidating the mechanisms which regulate the interaction between stress and innate immunity, researchers may be able to predict when birds experience increased susceptibility to infections and can target specific mediators to mitigate stress-induced suppression of innate immune activity. Such elucidation is especially important for urban birds, such as the House Sparrow (Passer domesticus), because these birds experience higher pathogen prevalence and transmission when compared to birds in rural regions. I investigated the role of corticosterone (CORT) in stress-induced suppression of two measures of innate immune activity (complement- and natural antibody-mediated activity) in male House Sparrows. Corticosterone, the primary avian glucocorticoid, is elevated during the stress response and high levels of this hormone induce effects through the activation of cytosolic and membrane-bound glucocorticoid receptors (GR). My results demonstrate that CORT is necessary and sufficient for stress-induced suppression of complement-mediated activity, and that this relationship is consistent between years. Corticosterone, however, does not inhibit complement-mediated activity through cytosolic GR, and additional research is needed to confirm the involvement of membrane-bound GR. The role of CORT in stress-induced inhibition of natural antibody-mediated activity, however, remains puzzling. Stress-induced elevation of CORT can suppress natural antibody-mediated activity through the activation of cytosolic GR, but the necessity of this mechanism varies inter-annually. In other words, both CORT-dependent and CORT-independent mechanisms may inhibit natural antibody-mediated activity during stress in certain years, but the causes of this inter-annual variation are not known. Previous studies have indicated that changes in the pathogen environment or food availability can alter regulation of innate immunity, but further research is needed to test these hypotheses. Overall, my dissertation demonstrates that stress inhibits innate immunity through several mechanisms, but environmental pressures may influence this inhibitory relationship.
ContributorsGao, Sisi (Author) / Deviche, Pierre (Thesis advisor) / DeNardo, Dale (Committee member) / McGraw, Kevin (Committee member) / Orchinik, Miles (Committee member) / Moore, Michael C. (Committee member) / Arizona State University (Publisher)
Created2017
155697-Thumbnail Image.png
Description
Many animals thermoregulate to maximize performance. However, interactions with other animals, such as competitors or predators, limit access to preferred microclimates. For instance, an animal may thermoregulate poorly when fighting rivals or avoiding predators. However, the distribution of thermal resources should influence how animals perceive and respond to risk. When

Many animals thermoregulate to maximize performance. However, interactions with other animals, such as competitors or predators, limit access to preferred microclimates. For instance, an animal may thermoregulate poorly when fighting rivals or avoiding predators. However, the distribution of thermal resources should influence how animals perceive and respond to risk. When thermal resources are concentrated in space, individuals compete for access, which presumably reduces the thermoregulatory performance while making their location more predictable to predators. Conversely, when thermal resources are dispersed, several individuals can thermoregulate effectively without occupying the same area. Nevertheless, interactions with competitors or predators impose a potent stress, often resulting in both behavioral and physiological changes that influence thermoregulation. To assess the costs of intraspecific competition and predation risk during thermoregulation, I measured thermoregulation, movement, and hormones of male lizards (Sceloporus jarrovi) in experiment landscapes, with clumped to patchy distributions of microclimates. I found lizards aggressively competed for access to microclimates, with larger males gaining priority access when thermal resources were aggregated. Competition reduced thermoregulatory performance, increased movements, and elevated plasma corticosterone in large and small males. However, the magnitude of these responses decreased as the patchiness of the thermal environment increased. Similarly, under simulated predation risk, lizards reduced thermoregulatory performance, decreased movements, and elevated plasma corticosterone. Again, with the magnitude of these responses decreased with increasing thermal patchiness. Interestingly, even without competitors or predators, lizards in clumped arenas moved greater distances and circulated more corticosterone than did lizards in patchy arenas, indicating the thermal quality of the thermal landscape affected the energetic demands on lizards. Thus, biologists should consider species interactions and spatial structure when modeling impacts of climate change on thermoregulation.
ContributorsRusch, Travis W (Author) / Angilletta, Michael (Thesis advisor) / Sears, Mike (Committee member) / DeNardo, Dale (Committee member) / Deviche, Pierre (Committee member) / McGraw, Kevin (Committee member) / Arizona State University (Publisher)
Created2017
Description
“Tell It to the Frogs: Fukushima’s nuclear disaster and its impact on the Japanese Tree Frog” is a representation of the work from Giraudeau et. al’s “Carotenoid distribution in wild Japanese tree frogs (Hyla japonica) exposed to ionizing radiation in Fukushima.” This paper looked to see if carotenoid levels in

“Tell It to the Frogs: Fukushima’s nuclear disaster and its impact on the Japanese Tree Frog” is a representation of the work from Giraudeau et. al’s “Carotenoid distribution in wild Japanese tree frogs (Hyla japonica) exposed to ionizing radiation in Fukushima.” This paper looked to see if carotenoid levels in the tree frog’s vocal sac, liver, and blood were affected by radiation from Fukushima’s power plant explosion. Without carotenoids, the pigment that gives the frogs their orange color on their necks, their courtship practices would be impacted and would not be as able to show off their fitness to potential mates. The artwork inspired by this research displayed the tree frog’s degradation over time due to radiation, starting with normal life and ending with their death and open on the table. The sculptures also pinpoint where the carotenoids were being measured with a brilliant orange glaze. Through ceramic hand building, the artist created larger than life frogs in hopes to elicit curiosity about them and their plight. While the paper did not conclude any changes in the frog’s physiology after 18 months of exposure, there are still questions that are left unanswered. Why did these frogs not have any reaction? Could there be any effects after more time has passed? Is radiation leakage as big of a problem as previously thought? The only way to get the answers to these questions is to be aware of these amphibians, the circumstances that led them to be involved, and continued research on them and radiation.
ContributorsWesterfield, Savannah (Author) / Beiner, Susan (Thesis director) / McGraw, Kevin (Committee member) / School of Life Sciences (Contributor) / School of Art (Contributor) / Barrett, The Honors College (Contributor)
Created2019-05
132428-Thumbnail Image.png
Description
Experimentation with glaze materials resulted in 2 functional and interesting base glazes with multiple color variants each. A semi-matte stoneware glaze was created, however after being unable to replicate a specific coloring without drying out the glaze, it was discovered that using this glaze to spray over specific studio glazes

Experimentation with glaze materials resulted in 2 functional and interesting base glazes with multiple color variants each. A semi-matte stoneware glaze was created, however after being unable to replicate a specific coloring without drying out the glaze, it was discovered that using this glaze to spray over specific studio glazes produced a more pleasant color effect than the glaze by itself. A glossy clear glaze was created. The glaze crazed minimally, and color variants were created with the rare earth metals erbium, praseodymium, and neodymium, resulting in celadon-like glazes that were pink, green, and bluish purple respectively. Finally, A semi-matte stoneware glaze with high spodumene content was created with two specific color variations
ContributorsVilen, Zachary Kwochka (Author) / Beiner, Susan (Thesis director) / Steimle, Timothy (Committee member) / School of Life Sciences (Contributor) / School of Molecular Sciences (Contributor) / Barrett, The Honors College (Contributor)
Created2019-05