Matching Items (3)
Filtering by

Clear all filters

Description
Optical Fibers coupled to laser light sources, and Light Emitting Diodes are the two classes of technologies used for optogenetic experiments. Arizona State University's Flexible Display Center fabricates novel flexible Organic Light Emitting Diodes(OLEDs). These OLEDs have the capability of being monolithically fabricated over flexible, transparent plastic substrates and having

Optical Fibers coupled to laser light sources, and Light Emitting Diodes are the two classes of technologies used for optogenetic experiments. Arizona State University's Flexible Display Center fabricates novel flexible Organic Light Emitting Diodes(OLEDs). These OLEDs have the capability of being monolithically fabricated over flexible, transparent plastic substrates and having power efficient ways of addressing high density arrays of LEDs. This thesis critically evaluates the technology by identifying the key advantages, current limitations and experimentally assessing the technology in in-vivo and in-vitro animal models. For in-vivo testing, the emitted light from a flat OLED panel was directly used to stimulate the neo-cortex in the M1 region of transgenic mice expressing ChR2 (B6.Cg-Tg (Thy1-ChR2/EYFP) 9Gfng/J). An alternative stimulation paradigm using a collimating optical system coupled with an optical fiber was used for stimulating neurons in layer 5 of the motor cortex in the same transgenic mice. EMG activity was recorded from the contralateral vastus lateralis muscles. In vitro testing of the OLEDs was done in primary cortical neurons in culture transfected with blue light sensitive ChR2. The neurons were cultured on a microelectrode array for taking neuronal recordings.
ContributorsShah, Ankur (Author) / Muthuswamy, Jitendran (Thesis advisor) / Greger, Bradley (Committee member) / Blain Christen, Jennifer (Committee member) / Arizona State University (Publisher)
Created2015
136814-Thumbnail Image.png
Description
The goal of this project was to explore biomimetics by creating a jellyfish flying device that uses propulsion of air to levitate while utilizing electromyography signals and infrared signals as mechanisms to control the device. Completing this project would require knowledge of biological signals, electrical circuits, computer programming, and physics

The goal of this project was to explore biomimetics by creating a jellyfish flying device that uses propulsion of air to levitate while utilizing electromyography signals and infrared signals as mechanisms to control the device. Completing this project would require knowledge of biological signals, electrical circuits, computer programming, and physics to accomplish. An EMG sensor was used to obtain processed electrical signals produced from the muscles in the forearm and was then utilized to control the actuation speed of the tentacles. An Arduino microprocessor was used to translate the EMG signals to infrared blinking sequences which would propagate commands through a constructed circuit shield to the infrared receiver on jellyfish. The receiver will then translate the received IR sequence into actions. Then the flying device must produce enough thrust to propel the body upwards. The application of biomimetics would best test my skills as an engineer as well as provide a method of applying what I have learned over the duration of my undergraduate career.
ContributorsTsui, Jessica W (Author) / Muthuswamy, Jitteran (Thesis director) / Blain Christen, Jennifer (Committee member) / Barrett, The Honors College (Contributor) / Harrington Bioengineering Program (Contributor)
Created2014-05
137098-Thumbnail Image.png
Description
This paper summarizes the [1] ideas behind, [2] needs, [3] development, and [4] testing of 3D-printed sensor-stents known as Stentzors. This sensor was successfully developed entirely from scratch, tested, and was found to have an output of 3.2*10-6 volts per RMS pressure in pascals. This paper also recommends further work

This paper summarizes the [1] ideas behind, [2] needs, [3] development, and [4] testing of 3D-printed sensor-stents known as Stentzors. This sensor was successfully developed entirely from scratch, tested, and was found to have an output of 3.2*10-6 volts per RMS pressure in pascals. This paper also recommends further work to render the Stentzor deployable in live subjects, including [1] further design optimization, [2] electrical isolation, [3] wireless data transmission, and [4] testing for aneurysm prevention.
ContributorsMeidinger, Aaron Michael (Author) / LaBelle, Jeffrey (Thesis director) / Frakes, David (Committee member) / Barrett, The Honors College (Contributor) / Mechanical and Aerospace Engineering Program (Contributor)
Created2014-05