Matching Items (4)
Filtering by

Clear all filters

137098-Thumbnail Image.png
Description
This paper summarizes the [1] ideas behind, [2] needs, [3] development, and [4] testing of 3D-printed sensor-stents known as Stentzors. This sensor was successfully developed entirely from scratch, tested, and was found to have an output of 3.2*10-6 volts per RMS pressure in pascals. This paper also recommends further work

This paper summarizes the [1] ideas behind, [2] needs, [3] development, and [4] testing of 3D-printed sensor-stents known as Stentzors. This sensor was successfully developed entirely from scratch, tested, and was found to have an output of 3.2*10-6 volts per RMS pressure in pascals. This paper also recommends further work to render the Stentzor deployable in live subjects, including [1] further design optimization, [2] electrical isolation, [3] wireless data transmission, and [4] testing for aneurysm prevention.
ContributorsMeidinger, Aaron Michael (Author) / LaBelle, Jeffrey (Thesis director) / Frakes, David (Committee member) / Barrett, The Honors College (Contributor) / Mechanical and Aerospace Engineering Program (Contributor)
Created2014-05
161248-Thumbnail Image.png
Description
This dissertation investigated the use of membrane processes to selectively separate and concentrate nitrogen in human urine. The targeted nitrogen species to be recovered were urea from fresh human urine and unionized ammonia from hydrolyzed human urine. Chapter 1 investigated a novel two-step process of forward osmosis (FO) and membrane

This dissertation investigated the use of membrane processes to selectively separate and concentrate nitrogen in human urine. The targeted nitrogen species to be recovered were urea from fresh human urine and unionized ammonia from hydrolyzed human urine. Chapter 1 investigated a novel two-step process of forward osmosis (FO) and membrane distillation (MD) to recover the urea in fresh human urine. Specifically, FO was used to selectively separate urea from the other components in urine and MD was used to concentrate the separated urea. The combined process was able to produce a product solution that had an average urea concentration that is 45–68% of the urea concentration found in the fresh urine with greater than 90% rejection of total organic carbon (TOC).Chapter 2 determined the transport behavior of low molecular weight neutral nitrogen compounds in order to maximize ammonia recovery from real hydrolyzed human urine by FO. Novel strategic pH manipulation between the feed and the draw solution allowed for up to 86% recovery of ammonia by keeping the draw solution pH <6.5 and the feed solution pH >11. An economic analysis showed that ammonia recovery by FO has the potential to be much more economically favorable compared to ammonia air stripping or ion exchange if the proper draw solute is chosen. Chapter 3 investigated the dead-end rejection of urea in fresh urine at varying pH and the rejection of unionized ammonia and the ammonium ion in hydrolyzed urine by reverse osmosis (RO), nanofiltration (NF), and microfiltration (MF). When these different membrane separation processes were compared, NF is found to be a promising technology to recover up to 90% of ammonia from hydrolyzed urine with a high rejection of salts and organics. Chapter 4 investigated the use of the RO and NF to recover ammonia from hydrolyzed human urine in a cross-flow system where both rejection and fouling experiments were performed. For both RO and NF, ammonia rejection was found to be 0% while still achieving high rejection of TOC and salts, and MF pretreatment greatly reduced the extent of fouling on the membrane surface.
ContributorsRay, Hannah (Author) / Boyer, Treavor H (Thesis advisor) / Perreault, Francois (Committee member) / Sinha, Shahnawaz (Committee member) / Arizona State University (Publisher)
Created2020
161280-Thumbnail Image.png
Description
This dissertation focused on the implementation of urine diversion systems in commercial and institutional buildings in the United States with a focus on control of the urea hydrolysis reaction. Urine diversion is the process by which urine is separately collected at the source in order to realize system benefits, including

This dissertation focused on the implementation of urine diversion systems in commercial and institutional buildings in the United States with a focus on control of the urea hydrolysis reaction. Urine diversion is the process by which urine is separately collected at the source in order to realize system benefits, including water conservation, nutrient recovery, and pharmaceutical removal. Urine diversion systems depend greatly on the functionality of nonwater urinals and urine diverting toilets, which are needed to collect undiluted urine. However, the urea hydrolysis reaction creates conditions that lead to precipitation in the fixtures due to the increase in pH from 6 to 9 as ammonia and bicarbonate are produced. Chapter 2 and Chapter 3 describes the creation and use of a cyber-physical system (CPS) to monitor and control urea hydrolysis in the urinal testbed. Two control logics were used to control urea hydrolysis in realistic restroom conditions. In the experiments, acid was added to inhibit urea hydrolysis during periods of high and low building occupancy. These results were able to show that acid should be added based on the restroom use in order to efficiently inhibit urea hydrolysis. Chapter 4 advanced the results from Chapter 3 by testing the acid addition control logics in a real restroom with the urinal-on-wheels. The results showed that adding acid during periods of high building occupancy equated to the least amount of acid added and allowed for urea hydrolysis inhibition. This study also analyzed the bacterial communities of the collected urine and found that acid addition changed the structure of the bacterial communities. Chapter 5 showed an example of the capabilities of a CPS when implemented in CI buildings. The study used data mining methods to predict chlorine residuals in premise plumbing in a CI green building. The results showed that advance modeling methods were able to model the system better than traditional methods. These results show that CPS technology can be used to illuminate systems and can provide information needed to understand conditions within CI buildings.
ContributorsSaetta, Daniella (Author) / Boyer, Treavor H (Thesis advisor) / Hamilton, Kerry (Committee member) / Ross, Heather M. (Committee member) / Boscovic, Dragan (Committee member) / Arizona State University (Publisher)
Created2021
168770-Thumbnail Image.png
Description
Global shortages of urea and unsustainable production of synthetic urea have caused concerns over the future of food production, automobile operation, and other processes. Urine is a waste product that could supplement synthetic urea production. This study utilizes polyamide reverse osmosis (RO) and nanofiltration (NF) membranes in a cross-flow orientation

Global shortages of urea and unsustainable production of synthetic urea have caused concerns over the future of food production, automobile operation, and other processes. Urine is a waste product that could supplement synthetic urea production. This study utilizes polyamide reverse osmosis (RO) and nanofiltration (NF) membranes in a cross-flow orientation to selectively recover urea from fresh human urine. Urea permeation experiments were conducted to determine the effects of urea stabilization via pH adjustment and membrane type on the production of a pure urea product. Fouling mitigation experiments were then conducted to determine the efficacy of microfiltration (MF) pretreatment on the reduction of the membrane fouling layer. The results showed that the NF90 membrane had advantageous performance to the BW30 RO and NF270 membranes, permeating 76% of the urea while rejecting 68% of the conductivity. Urine stabilization via acetic acid or sodium hydroxide addition did not inhibit membrane performance, signifying the use of pH 5 as a suitable pretreatment condition. Real fresh urine had higher rejection of constituents for NF90, suggesting the reduction of flux across the membrane due to interactions with organic material. MF pretreatment reduced foulant thickness and permeate flux loss but did not change the speciation of microorganisms. Finally, different urea-based products, such as fertilizers, biocement, and synthetic polymers, were suggested to show the potential of urine-recovered urea to reduce costs. The results from this work show the efficacy of using polyamide RO and NF membranes to supplement unsustainable synthetic production of urea with sustainably sourced urea from a waste product, human urine.
ContributorsCrane, Lucas Christopher (Author) / Boyer, Treavor H (Thesis advisor) / Perreault, Francois (Committee member) / Westerhoff, Paul (Committee member) / Arizona State University (Publisher)
Created2022