Matching Items (10)
Filtering by

Clear all filters

152144-Thumbnail Image.png
Description
Accumulating evidence implicates exposure to adverse childhood experiences in the development of hypocortisolism in the long-term, and researchers are increasingly examining individual-level mechanisms that may underlie, exacerbate or attenuate this relation among at-risk populations. The current study takes a developmentally and theoretically informed approach to examining episodic childhood stressors, inherent

Accumulating evidence implicates exposure to adverse childhood experiences in the development of hypocortisolism in the long-term, and researchers are increasingly examining individual-level mechanisms that may underlie, exacerbate or attenuate this relation among at-risk populations. The current study takes a developmentally and theoretically informed approach to examining episodic childhood stressors, inherent and voluntary self-regulation, and physiological reactivity among a longitudinal sample of youth who experienced parental divorce. Participants were drawn from a larger randomized controlled trial of a preventive intervention for children of divorce between the ages of 9 and 12. The current sample included 159 young adults (mean age = 25.5 years; 53% male; 94% Caucasian) who participated in six waves of data collection, including a 15-year follow-up study. Participants reported on exposure to negative life events (four times over a 9-month period) during childhood, and mothers rated child temperament. Six years later, youth reported on the use of active and avoidant coping strategies, and 15 years later, they participated in a standardized psychosocial stress task and provided salivary cortisol samples prior to and following the task. Path analyses within a structural equation framework revealed that a multiple mediation model best fit the data. It was found that children with better mother-rated self-regulation (i.e. low impulsivity, low negative emotionality, and high attentional focus) exhibited lower total cortisol output 15 years later. In addition, greater self-regulation in childhood predicted greater use of active coping in adolescence, whereas a greater number of negative life events predicted increased use of avoidant coping in adolescence. Finally, a greater number of negative events in childhood predicted marginally lower total cortisol output, and higher levels of active coping in adolescence were associated with greater total cortisol output in young adulthood. Findings suggest that children of divorce who exhibit better self-regulation evidence lower cortisol output during a standardized psychosocial stress task relative to those who have higher impulsivity, lower attentional focus, and/or higher negative emotionality. The conceptual significance of the current findings, including the lack of evidence for hypothesized relations, methodological issues that arose, and issues in need of future research are discussed.
ContributorsHagan, Melissa (Author) / Luecken, Linda (Thesis advisor) / MacKinnon, David (Committee member) / Wolchik, Sharlene (Committee member) / Doane, Leah (Committee member) / Arizona State University (Publisher)
Created2013
152103-Thumbnail Image.png
Description
Each year, millions of aging women will experience menopause, a transition from reproductive capability to reproductive senescence. In women, this transition is characterized by depleted ovarian follicles, declines in levels of sex hormones, and a dysregulation of gonadotrophin feedback loops. Consequently, menopause is accompanied by hot flashes, urogenital atrophy, cognitive

Each year, millions of aging women will experience menopause, a transition from reproductive capability to reproductive senescence. In women, this transition is characterized by depleted ovarian follicles, declines in levels of sex hormones, and a dysregulation of gonadotrophin feedback loops. Consequently, menopause is accompanied by hot flashes, urogenital atrophy, cognitive decline, and other symptoms that reduce quality of life. To ameliorate these negative consequences, estrogen-containing hormone therapy is prescribed. Findings from clinical and pre-clinical research studies suggest that menopausal hormone therapies can benefit memory and associated neural substrates. However, findings are variable, with some studies reporting null or even detrimental cognitive and neurobiological effects of these therapies. Thus, at present, treatment options for optimal cognitive and brain health outcomes in menopausal women are limited. As such, elucidating factors that influence the cognitive and neurobiological effects of menopausal hormone therapy represents an important need relevant to every aging woman. To this end, work in this dissertation has supported the hypothesis that multiple factors, including post-treatment circulating estrogen levels, experimental handling, type of estrogen treatment, and estrogen receptor activity, can impact the realization of cognitive benefits with Premarin hormone therapy. We found that the dose-dependent working memory benefits of subcutaneous Premarin administration were potentially regulated by the ratios of circulating estrogens present following treatment (Chapter 2). When we administered Premarin orally, it impaired memory (Chapter 3). Follow-up studies revealed that this impairment was likely due to the handling associated with treatment administration and the task difficulty of the memory measurement used (Chapters 3 and 4). Further, we demonstrated that the unique cognitive impacts of estrogens that become increased in circulation following Premarin treatments, such as estrone (Chapter 5), and their interactions with the estrogen receptors (Chapter 6), may influence the realization of hormone therapy-induced cognitive benefits. Future directions include assessing the mnemonic effects of: 1) individual biologically relevant estrogens and 2) clinically-used bioidentical hormone therapy combinations of estrogens. Taken together, information gathered from these studies can inform the development of novel hormone therapies in which these parameters are optimized.
ContributorsEngler-Chiurazzi, Elizabeth (Author) / Bimonte-Nelson, Heather A. (Thesis advisor) / Sanabria, Federico (Committee member) / Olive, Michael F (Committee member) / Hoffman, Steven (Committee member) / Arizona State University (Publisher)
Created2013
151330-Thumbnail Image.png
Description
After natural menopause in women, androstenedione becomes the primary hormone secreted by the residual follicle deplete ovaries. Two independent studies, in rodents that had undergone ovarian follicular depletion, found that higher serum androstenedione levels correlated with increased working memory errors. This led to the hypothesis that androstenedione impairs memory. The

After natural menopause in women, androstenedione becomes the primary hormone secreted by the residual follicle deplete ovaries. Two independent studies, in rodents that had undergone ovarian follicular depletion, found that higher serum androstenedione levels correlated with increased working memory errors. This led to the hypothesis that androstenedione impairs memory. The current study directly tested this hypothesis, examining the cognitive effects of androstenedione administration in a rodent model. Middle-aged ovariectomized rats received vehicle or one of two doses of androstenedione (4 or 8 mg/kg daily). Rats were tested on a spatial working and reference memory maze battery including the water radial arm maze, Morris maze, and delay-match-to-sample task. Results showed that androstenedione at the highest dose impaired reference memory and working memory, including ability to maintain performance as memory demand was elevated. The latter was true for both high temporal demand memory retention of one item of spatial information, as well as the ability to handle multiple items of spatial working memory information. Glutamic acid decarboxylase (GAD) levels were measured in multiple brain regions to determine whether the gamma-aminobutyric acid (GABA) system mediates androstenedione's cognitive impairments. Results showed that higher entorhinal cortex GAD levels were correlated with poorer Morris maze performance, regardless of androstenedione treatment. These findings suggest that androstenedione, the main hormone produced by the follicle deplete ovary, is detrimental to spatial learning, reference memory, and working memory, and that spatial reference memory performance might be related to the GABAergic system.
ContributorsCamp, Bryan Walter (Author) / Bimonte-Nelson, Heather A. (Thesis advisor) / Olive, Michael F (Committee member) / Conrad, Cheryl D. (Committee member) / Arizona State University (Publisher)
Created2012
151302-Thumbnail Image.png
Description
Cognitive function declines with normal age and disease states, such as Alzheimer's disease (AD). Loss of ovarian hormones at menopause has been shown to exacerbate age-related memory decline and may be related to the increased risk of AD in women versus men. Some studies show that hormone therapy (HT) can

Cognitive function declines with normal age and disease states, such as Alzheimer's disease (AD). Loss of ovarian hormones at menopause has been shown to exacerbate age-related memory decline and may be related to the increased risk of AD in women versus men. Some studies show that hormone therapy (HT) can have beneficial effects on cognition in normal aging and AD, but increasing evidence suggests that the most commonly used HT formulation is not ideal. Work in this dissertation used the surgically menopausal rat to evaluate the cognitive effects and mechanisms of progestogens proscribed to women. I also translated these questions to the clinic, evaluating whether history of HT use impacts hippocampal and entorhinal cortex volumes assessed via imaging, and cognition, in menopausal women. Further, this dissertation investigates how sex impacts responsiveness to dietary interventions in a mouse model of AD. Results indicate that the most commonly used progestogen component of HT, medroxyprogesterone acetate (MPA), impairs cognition in the middle-aged and aged surgically menopausal rat. Further, MPA is the sole hormone component of the contraceptive Depo Provera, and my research indicates that MPA administered to young-adult rats leads to long lasting cognitive impairments, evident at middle age. Natural progesterone has been gaining increasing popularity as an alternate option to MPA for HT; however, my findings suggest that progesterone also impairs cognition in the middle-aged and aged surgically menopausal rat, and that the mechanism may be through increased GABAergic activation. This dissertation identified two less commonly used progestogens, norethindrone acetate and levonorgestrel, as potential HTs that could improve cognition in the surgically menopausal rat. Parameters guiding divergent effects on cognition were discovered. In women, prior HT use was associated with larger hippocampal and entorhinal cortex volumes, as well as a modest verbal memory enhancement. Finally, in a model of AD, sex impacts responsiveness to a dietary cognitive intervention, with benefits seen in male, but not female, transgenic mice. These findings have clinical implications, especially since women are at higher risk for AD diagnosis. Together, it is my hope that this information adds to the overarching goal of optimizing cognitive aging in women.
ContributorsBraden, Brittany Blair (Author) / Bimonte-Nelson, Heather A. (Thesis advisor) / Neisewander, Janet L (Committee member) / Conrad, Cheryl D. (Committee member) / Baxter, Leslie C (Committee member) / Arizona State University (Publisher)
Created2012
152286-Thumbnail Image.png
Description
Chronic restraint stress impairs hippocampal-mediated spatial learning and memory, which improves following a post-stress recovery period. Here, we investigated whether brain derived neurotrophic factor (BDNF), a protein important for hippocampal function, would alter the recovery from chronic stress-induced spatial memory deficits. Adult male Sprague-Dawley rats were infused into the hippocampus

Chronic restraint stress impairs hippocampal-mediated spatial learning and memory, which improves following a post-stress recovery period. Here, we investigated whether brain derived neurotrophic factor (BDNF), a protein important for hippocampal function, would alter the recovery from chronic stress-induced spatial memory deficits. Adult male Sprague-Dawley rats were infused into the hippocampus with adeno- associated viral vectors containing the coding sequence for short interfering (si)RNA directed against BDNF or a scrambled sequence (Scr), with both containing the coding information for green fluorescent protein to aid in anatomical localization. Rats were then chronically restrained (wire mesh, 6h/d/21d) and assessed for spatial learning and memory using a radial arm water maze (RAWM) either immediately after stressor cessation (Str-Imm) or following a 21-day post-stress recovery period (Str-Rec). All groups learned the RAWM task similarly, but differed on the memory retention trial. Rats in the Str-Imm group, regardless of viral vector contents, committed more errors in the spatial reference memory domain than did non-stressed controls. Importantly, the typical improvement in spatial memory following recovery from chronic stress was blocked with the siRNA against BDNF, as Str-Rec-siRNA performed worse on the RAWM compared to the non-stressed controls or Str-Rec-Scr. These effects were specific for the reference memory domain as repeated entry errors that reflect spatial working memory were unaffected by stress condition or viral vector contents. These results demonstrate that hippocampal BDNF is necessary for the recovery from stress-induced hippocampal dependent spatial memory deficits in the reference memory domain.
ContributorsOrtiz, J. Bryce (Author) / Conrad, Cheryl D. (Thesis advisor) / Olive, M. Foster (Committee member) / Taylor, Sara (Committee member) / Bimonte-Nelson, Heather A. (Committee member) / Arizona State University (Publisher)
Created2013
157225-Thumbnail Image.png
Description
The present series of studies examined whether a novel implementation of an

intermittent restraint (IR) chronic stress paradigm could be used to investigate hippocampal-dependent spatial ability in both sexes. In experiments 1 and 2, Sprague- Dawley male rats were used to identify the optimal IR parameters to assess spatial ability. For

The present series of studies examined whether a novel implementation of an

intermittent restraint (IR) chronic stress paradigm could be used to investigate hippocampal-dependent spatial ability in both sexes. In experiments 1 and 2, Sprague- Dawley male rats were used to identify the optimal IR parameters to assess spatial ability. For IR, rats were restrained for 2 or 6hrs/day (IR2, IR6, respectively) for five days and then given two days off, a process that was repeated for three weeks and compared to rats restrained for 6hrs/d for each day (DR6) and non-stressed controls (CON). Spatial memory was tested on the radial arm water maze (RAWM), object placement (OP), novel object recognition (NOR) and Y-maze. The results for the first two experiments revealed that IR6, but not IR2, was effective in impairing spatial memory in male rats and that task order impacted performance. In experiment 3, an extended IR paradigm for six weeks was implemented before spatial memory testing commenced in male and female rats (IR- M, IR-F). Unexpectedly, an extended IR paradigm failed to impair spatial memory in either males or females, suggesting that when extended, the IR paradigm may have become predictable. In experiment 4, an unpredictable IR (UIR) paradigm was implemented, in which restraint duration (30 or 60-min) combined with orbital shaking, time of day, and the days off from UIR were varied. UIR impaired spatial memory in males, but not females. Together with other reports, these findings support the interpretation that chronic stress negatively impairs hippocampal-dependent function in males, but not females, and that females appear to be resilient to spatial memory deficits in the face of chronic stress.
ContributorsPeay, Dylan (Author) / Conrad, Cheryl D. (Thesis advisor) / Bimonte-Nelson, Heather A. (Committee member) / Wynne, Clive (Committee member) / Arizona State University (Publisher)
Created2019
154061-Thumbnail Image.png
Description
Aging and the menopause transition are both intricately linked to cognitive changes

during mid-life and beyond. Clinical literature suggests the age at menopause onset can differentially impact cognitive status later in life. Yet, little is known about the relationship between behavioral and brain changes that occur during the transitional stage into

Aging and the menopause transition are both intricately linked to cognitive changes

during mid-life and beyond. Clinical literature suggests the age at menopause onset can differentially impact cognitive status later in life. Yet, little is known about the relationship between behavioral and brain changes that occur during the transitional stage into the post-menopausal state. Much of the pre-clinical work evaluating an animal model of menopause involves ovariectomy in rodents; however, ovariectomy results in an abrupt loss of circulating hormones and ovarian tissue, limiting the ability to evaluate gradual follicular depletion. The 4-vinylcyclohexene diepoxide (VCD) model simulates transitional menopause in rodents by selectively depleting the immature ovarian follicle reserve and allowing animals to retain their follicle-deplete ovarian tissue, resulting in a profile similar to the majority of menopausal women. Here, Vehicle or VCD treatment was administered to ovary-intact adult and middle-aged Fischer-344 rats to assess the cognitive effects of transitional menopause via VCD-induced follicular depletion over time, as well as to understand potential interactions with age, with VCD treatment beginning at either six or twelve months of age. Results indicated that subjects that experience menopause onset at a younger age had impaired spatial working memory early in the transition to a follicle-deplete state. Moreover, in the mid- and post- menopause time points, VCD-induced follicular depletion amplified an age effect, whereby Middle-Aged VCD-treated animals had poorer spatial working and reference memory performance than Young VCD-treated animals. Correlations suggested that in middle age, animals with higher circulating estrogen levels tended to perform better on spatial memory tasks. Overall, these findings suggest that the age at menopause onset is a critical parameter to consider when evaluating learning and memory across the transition to reproductive senescence. From a translational perspective, this study informs the field with respect to how the age at menopause onset might impact cognition in menopausal women, as well as provides insight into time points to explore for the window of opportunity for hormone therapy during the menopause transition to attenuate age- and menopause- related cognitive decline, and produce healthy brain aging profiles in women who retain their ovaries throughout the lifespan.
ContributorsKoebele, Stephanie Victoria (Author) / Bimonte-Nelson, Heather A. (Thesis advisor) / Aiken, Leona S. (Committee member) / Conrad, Cheryl D. (Committee member) / Wynne, Clive DL (Committee member) / Arizona State University (Publisher)
Created2015
149536-Thumbnail Image.png
Description
Dysregulated cortisol has been linked to a variety of adverse physical and psychological consequences. Stressors in the childhood family environment can influence cortisol activity throughout development. For example, research has shown that both infants and children of depressed mothers exhibit altered levels of cortisol compared to infants and children of

Dysregulated cortisol has been linked to a variety of adverse physical and psychological consequences. Stressors in the childhood family environment can influence cortisol activity throughout development. For example, research has shown that both infants and children of depressed mothers exhibit altered levels of cortisol compared to infants and children of non-depressed mothers. It is unclear, however, whether exposure to maternal depression in childhood and adolescence is related to cortisol activity at later stages of development. The current study examined the longitudinal relation between maternal depressive symptoms during late childhood (9-12 years old) and adolescence (15-19 years old) and cortisol activity in offspring in young adulthood (24- 28 years old) in a sample of 40 young adults and their mothers. Maternal depressive symptoms were prospectively assessed at four time points across the 15 year study. Cortisol samples were collected from young adult offspring at the final time point. Findings revealed that higher levels of maternal depressive symptoms during late childhood were associated with lower total cortisol output in young adulthood. Results suggest that attenuated cortisol levels, which put these young adults at risk for a variety of stress-related physical and psychological illnesses, may be a long-term consequence of exposure to maternal depression,. Depressive symptoms in mothers during their child's adolescence, however, did not relate to cortisol output. These findings suggest a sensitive period in late childhood during which the development of HPA activity may be susceptible to the environmental stressor of maternal depression.
ContributorsMahrer, Nicole Eva (Author) / Wolchik, Sharlene (Thesis advisor) / Luecken, Linda (Thesis advisor) / Tein, Jenn-Yun (Committee member) / Arizona State University (Publisher)
Created2011
157790-Thumbnail Image.png
Description
Progestogens, such as progesterone (P4), medroxyprogesterone acetate (MPA), and micronized progesterone (mP4), are given to ovary-intact women during the transition to menopause to attenuate heavy uterine bleeding and other symptoms. Both progesterone and MPA administration have been shown to impair cognition in ovariectomized (Ovx) rats compared to vehicle-treated controls. mP4,

Progestogens, such as progesterone (P4), medroxyprogesterone acetate (MPA), and micronized progesterone (mP4), are given to ovary-intact women during the transition to menopause to attenuate heavy uterine bleeding and other symptoms. Both progesterone and MPA administration have been shown to impair cognition in ovariectomized (Ovx) rats compared to vehicle-treated controls. mP4, however, has yet to be investigated for cognitive effects in a preclinical setting. Further, progestogens affect the GABA (-aminobutyric acid) ergic system, specifically glutamic acid decarboxylase (GAD) the rate limiting enzyme necessary for synthesizing GABA. The goal of this experiment was to investigate the cognitive impact of P4, MPA, and mP4, in an ovary-intact transitional menopause model using 4-vinylcyclohexene diepoxide (VCD) and assess whether these potential changes were related to the GABAergic system. One group of rats received vehicle injections, and the remainder of the groups received VCD to induce follicular depletion, modeling transitional menopause in women. Vehicle or hormone administration began during perimenopause to model the time period when women often take progestogens alone. Rats then underwent testing to assess spatial working and reference memory in the water radial-arm maze (WRAM) and spatial reference memory in the Morris water maze (MWM). Results indicate that P4 and MPA improved learning for working memory measure, but only MPA impaired memory retention in the WRAM. For the WRAM reference memory measure, VCD only treated rats showed impaired learning and memory retention compared to vehicle controls; progestogens did not impact this impairment. Although GAD expression did not differ between treatment groups, in general, there was a relationship between GAD expression and WRAM performance such that rats that tended to have higher GAD levels also tended to make more WRAM working memory errors. Thus, while P4 and MPA have been previously shown to impair cognition in an Ovx model, giving these hormones early in an ovary-intact perimenopause model elicits divergent effects, such that these progestogens can improve cognition. Additionally, these findings suggest that the cognitive changes seen herein are related to the interaction between progestogens and the GABAergic system. Further investigation into progestogens is warranted to fully understand their impact on cognition given the importance of utilizing progestogens in the clinic.
ContributorsPena, Veronica Leigh (Author) / Bimonte-Nelson, Heather A. (Thesis advisor) / Conrad, Cheryl (Committee member) / Gipson-Reichardt, Cassandra (Committee member) / Arizona State University (Publisher)
Created2019
158360-Thumbnail Image.png
Description
Post-Traumatic Stress Disorder (PTSD) is characterized by intrusive memories from a traumatic event. Current therapies rarely lead to complete remission. PTSD can be modeled in rodents using chronic stress (creating vulnerable phenotype) combined with fear conditioning (modeling a traumatic experience), resulting in attenuated extinction learning and impaired recall of extinction.

Post-Traumatic Stress Disorder (PTSD) is characterized by intrusive memories from a traumatic event. Current therapies rarely lead to complete remission. PTSD can be modeled in rodents using chronic stress (creating vulnerable phenotype) combined with fear conditioning (modeling a traumatic experience), resulting in attenuated extinction learning and impaired recall of extinction. Studies typically investigate cognition soon after chronic stress ends; however, as days and weeks pass (“rest” period) some cognitive functions may improve compared to soon after stress. Whether a rest period between chronic stress and fear conditioning/extinction would lead to improvements is unclear. In Chapter 2, male rats were chronically stressed by restraint (6hr/d/21d), a reliable method to produce cognitive changes, or assigned to a non-stressed control group (CON). After chronic stress ended, fear conditioning occurred within a day (STR-IMM), or after three (STR-R3) or six weeks (STR-R6). During the first three extinction trials, differences emerged in fear to the non-shock context: STR-R3/R6 showed significantly less fear to the context than did STR-IMM or CON. Differences were unlikely attributable to generalization or to second-order conditioning. Therefore, a rest period following chronic stress may lead to improved fear extinction and discrimination between the conditioned stimulus and environment. In Chapter 3, the infralimbic cortex (IL) was investigated due to the IL’s importance in fear extinction. Rats were infused with chemogenetics to target IL glutamatergic neurons and then assigned to CON, STR-IMM or STR-R3. During the rest period of STR-R3 and the restraint for STR-IMM, the IL was inhibited using CNO (1mg/kg BW, i.p., daily), which ended before behavioral testing. STR-R3 with IL inhibition failed to demonstrate a tone-shock association as spontaneous recovery was not observed. CON with IL inhibition behaved somewhat like STR-IMM; freezing to the extinction context was enhanced. Consequently, inhibiting IL function during the rest period following chronic stress was particularly disruptive for learning in STR-R3, impaired freezing to a safe context for CON, and had no effect in STR-IMM. These studies show that time since the end of chronic stress (recently ended or with a delay) can interact with IL functioning to modify fear learning and response.
ContributorsJudd, Jessica Michelle (Author) / Conrad, Cheryl D. (Thesis advisor) / Sanabria, Federico (Committee member) / Olive, Michael F (Committee member) / Bimonte-Nelson, Heather A. (Committee member) / Arizona State University (Publisher)
Created2020