Matching Items (6)
Filtering by

Clear all filters

152990-Thumbnail Image.png
Description
I combine, compare, and contrast the results from two different numerical techniques (grid vs. particle methods) studying multi-scale processes in galaxy and structure formation. I produce a method for recreating identical initial conditions for one method from those of the other, and explore methodologies necessary for making these two methods

I combine, compare, and contrast the results from two different numerical techniques (grid vs. particle methods) studying multi-scale processes in galaxy and structure formation. I produce a method for recreating identical initial conditions for one method from those of the other, and explore methodologies necessary for making these two methods as consistent as possible. With this, I first study the impact of streaming velocities of baryons with respect to dark matter, present at the epoch of reionization, on the ability for small halos to accrete gas at high redshift. With the inclusion of this stream velocity, I find the central density profile of halos is reduced, overall gas condensation is delayed, and infer a delay in the inevitable creation of stars.

I then combine the two numerical methods to study starburst outflows as they interact with satellite halos. This process leads to shocks catalyzing the formation of molecular coolants that lead to bursts in star formation, a process that is better captured in grid methods. The resultant clumps of stars are removed from their initial dark matter halo, resemble precursors to modern-day globular clusters, and their formation may be observable with upcoming telescopes.

Finally, I perform two simulation suites, comparing each numerical method's ability to model the impact of energetic feedback from accreting black holes at the core of giant clusters. With these comparisons I show that black hole feedback can maintain a hot diffuse medium while limiting the amount of gas that can condense into the interstellar medium, reducing the central star formation by up to an order of magnitude.
ContributorsRichardson, Mark Lawrence Albert (Author) / Scannapieco, Evan (Thesis advisor) / Rhoads, James (Committee member) / Scowen, Paul (Committee member) / Timmes, Frank (Committee member) / Young, Patrick (Committee member) / Arizona State University (Publisher)
Created2014
150442-Thumbnail Image.png
Description
Most stars form in groups, and these clusters are themselves nestled within larger associations and stellar complexes. It is not yet clear, however, whether stars cluster on preferred size scales within galaxies, or if stellar groupings have a continuous size distribution. I have developed two methods to select stellar groupings

Most stars form in groups, and these clusters are themselves nestled within larger associations and stellar complexes. It is not yet clear, however, whether stars cluster on preferred size scales within galaxies, or if stellar groupings have a continuous size distribution. I have developed two methods to select stellar groupings across a wide range of size-scales in order to assess trends in the size distribution and other basic properties of stellar groupings. The first method uses visual inspection of color-magnitude and color-color diagrams of clustered stars to assess whether the compact sources within the potential association are coeval, and thus likely to be born from the same parentmolecular cloud. This method was developed using the stellar associations in the M51/NGC 5195 interacting galaxy system. This process is highly effective at selecting single-aged stellar associations, but in order to assess properties of stellar clustering in a larger sample of nearby galaxies, an automated method for selecting stellar groupings is needed. I have developed an automated stellar grouping selection method that is sensitive to stellar clustering on all size scales. Using the Source Extractor software package on Gaussian-blurred images of NGC 4214, and the annular surface brightness to determine the characteristic size of each cluster/association, I eliminate much of the size and density biases intrinsic to other methods. This automated method was tested in the nearby dwarf irregular galaxy NGC 4214, and can detect stellar groupings with sizes ranging from compact clusters to stellar complexes. In future work, the automatic selection method developed in this dissertation will be used to identify stellar groupings in a set of nearby galaxies to determine if the size scales for stellar clustering are uniform in the nearby universe or if it is dependent on local galactic environment. Once the stellar clusters and associations have been identified and age-dated, this information can be used to deduce disruption times from the age distribution as a function of the position of the stellar grouping within the galaxy, the size of the cluster or association, and the morphological type of the galaxy. The implications of these results for galaxy formation and evolution are discussed.
ContributorsKaleida, Catherine (Author) / Scowen, Paul A. (Thesis advisor) / Windhorst, Rogier A. (Thesis advisor) / Jansen, Rolf A. (Committee member) / Timmes, Francis X. (Committee member) / Scannapieco, Evan (Committee member) / Arizona State University (Publisher)
Created2011
156627-Thumbnail Image.png
Description
The formation of the firsts stars some 100-300 Myr after the Big Bang marked the end of the cosmic darks ages and created the elemental building blocks of not only rocky planets but eventually us. Understanding their formation, lifetimes, and contributions to the evolution of our universe is one of

The formation of the firsts stars some 100-300 Myr after the Big Bang marked the end of the cosmic darks ages and created the elemental building blocks of not only rocky planets but eventually us. Understanding their formation, lifetimes, and contributions to the evolution of our universe is one of the current frontiers in astronomy and astrophysics.

In this work I present an improved model for following the formation of Pop III stars, their effects on early galaxy evolution, and how we might search for them. I make use of a new subgrid model of turbulent mixing to accurately follow the time scales required to mix supernova (SN) ejecta -- enriched with heavy elements -- into the pristine gas. I implement this model within a large-scale cosmological simulation and follow the fraction of gas with metallicity below a critical value marking the boundary between Pop III and metal enriched Population II (Pop II) star formation. I demonstrate that accounting for subgrid mixing results in a Pop III stars formation rate that is 2-3 times higher than standard models with the same physical resolution.

I also implement and track a new "Primordial metals" (PM) scalar that tracks the metals generated by Pop III SNe. These metals are taken up by second generation stars and likely result in a subclass of carbon-enhanced, metal-poor (CEMP) stars. By tracking both regular metals and PM, I can model, in post-processing, the elemental abundances of simulation stars. I find good agreement between observations of CEMP-no Milky Way halo stars and second generation stars within the simulation when assuming the first stars had a typical mass of 60 M☉, providing clues as to the Pop III initial mass function.
ContributorsSarmento, Richard John (Author) / Scannapieco, Evan (Thesis advisor) / Windhorst, Rogier (Committee member) / Young, Patrick (Committee member) / Timmes, Frank (Committee member) / Patience, Jennifer (Committee member) / Arizona State University (Publisher)
Created2018
155904-Thumbnail Image.png
Description
The Universe transitioned from a state of neutral hydrogen (HI) shortly after recombination to its present day ionized state, but this transition, the Epoch of Reionization (EoR), has been poorly constrained by observational data. Estimates place the EoR between redshifts 6 < z <13 (330-770 Myr).

The interaction of the 21

The Universe transitioned from a state of neutral hydrogen (HI) shortly after recombination to its present day ionized state, but this transition, the Epoch of Reionization (EoR), has been poorly constrained by observational data. Estimates place the EoR between redshifts 6 < z <13 (330-770 Myr).

The interaction of the 21 cm hyperfine ground state emission/absorption-line of HI with the cosmic microwave background (CMB) and the radiation from the first luminous sources in the universe can be used to extract cosmological information about the EoR. Theorists have created global redshifted 21 cm EoR models of this interaction that predict the temperature perturbations to the CMB in the form of a sky-averaged difference temperature, Tb. The difficulty in measuring Tb is that it is

predicted to be on the order of 20 to 100 mK, while the sky foreground is dominated

by synchrotron radiation that is 105 times brighter. The challenge is to subtract the much brighter foreground radiation without subtracting the Tb signal and can only be done when the data has small error levels.

The Experiment to Detect the Global EoR Signature (EDGES) is an effort to measure Tb with a single wide field-of-view well-calibrated antenna. This dissertation focuses on reducing systematic errors by quantifying the impact of the chromatic nature of the antenna’s beam directivity and by measuring the variability of the spectral index of the radio sky foreground. The chromatic beam study quantified the superior qualities of the rectangular blade-shaped antenna and led to its adoption over the previously used fourpoint-shaped antenna and determined that a 5 term polynomial was optimum for removing the foreground. The spectral index, β, of the sky was measured, using 211 nights of data, to be −2.60 > β > −2.62 in lower LST regions, increasing to −2.50 near the Galactic plane. This matched simulated results using the Guzm´an et al. (2011) sky map (∆β < 0.05) and demonstrated the exceptional stability of the EDGES instrument. Lastly, an EoR model by Kaurov & Gnedin (2016) was shown to be inconsistent with measured EDGES data at a significance level of 1.9.
ContributorsMozdzen, Thomas J (Author) / Bowman, Judd D (Thesis advisor) / Scowen, Paul A (Committee member) / Groppi, Christopher E (Committee member) / Scannapieco, Evan (Committee member) / Windhorst, Rogier A (Committee member) / Arizona State University (Publisher)
Created2017
187398-Thumbnail Image.png
Description
Millimeter astronomy unlocks a window to the earliest produced light in the universe, called the Cosmic Microwave Background (CMB). Through analysis of the CMB, overarching features about the universe's evolution and structure can be better understood. Modern millimeter-wave instruments are constantly seeking improvements to sensitivity in the effort

Millimeter astronomy unlocks a window to the earliest produced light in the universe, called the Cosmic Microwave Background (CMB). Through analysis of the CMB, overarching features about the universe's evolution and structure can be better understood. Modern millimeter-wave instruments are constantly seeking improvements to sensitivity in the effort to further constrain small CMB anisotropies in both temperature and polarization. As a result, detailed investigations into lesser-known processes of the universe are now becoming possible. Here I present work on the millimeter-wavelength analysis of z ≈ 1 quiescent galaxy samples, whose conspicuous quenching of star formation is likely the result of active galactic nuclei (AGN) accretion onto supermassive black holes. Such AGN feedback would heat up a galaxy's surrounding circumgalactic medium (CGM). Obscured by signal from cold dust, I isolate the thermal Sunyaev-Zel'dovich effect, a CMB temperature anisotropy produced by hot ionized gas, to measure the CGM's average thermal energy and differentiate between AGN accretion models. I find a median thermal energy that best corresponds with moderate to high levels of AGN feedback. In addition, the radial profile of cold dust associated with the galaxy samples appears to be consistent with large-scale clustering of the universe. In the endeavor of increasingly efficient millimeter-wave detectors, I also describe the design process for novel multichroic dual-polarization antennas. Paired with extended hemispherical lenslets, simulations of these superconducting antennas show the potential to match or exceed performance compared to similar designs already in use. A prototype detector array, with dual-bowtie and hybrid trapezoidal antennas coupled to microwave kinetic inductance detectors (MKIDs) has been made and is under preparation to be tested in the near future. Finally, I also present my contributions to the cryogenic readout design of the Ali CMB Polarization Telescope (AliCPT), a large-scale CMB telescope geared towards searching the Northern Hemisphere sky for a unique `B-mode' polarization expected to be produced by primordial gravitational waves. Cryogenic readout is responsible for successful interfacing between room temperature electronics and sensitive detectors operating on AliCPT's sub-Kelvin temperature focal plane. The development of millimeter-wave instruments and future endeavors show great potential for the overall scientific community.
ContributorsMeinke, Jeremy (Author) / Mauskopf, Philip (Thesis advisor) / Alarcon, Ricardo (Committee member) / Scannapieco, Evan (Committee member) / Trichopoulos, Georgios (Committee member) / Arizona State University (Publisher)
Created2023
157761-Thumbnail Image.png
Description
In the upcoming decade, powerful new astronomical facilities such as the James Webb Space Telescope (JWST), the Square Kilometer Array (SKA), and ground-based 30-meter telescopes will open up the epoch of reionization to direct astronomical observation. One of the primary tools used to understand the bulk astrophysical properties of the

In the upcoming decade, powerful new astronomical facilities such as the James Webb Space Telescope (JWST), the Square Kilometer Array (SKA), and ground-based 30-meter telescopes will open up the epoch of reionization to direct astronomical observation. One of the primary tools used to understand the bulk astrophysical properties of the high-redshift universe are empirically-derived star-forming laws, which relate observed luminosity to fundamental astrophysical quantities such as star formation rate. The radio/infrared relation is one of the more mysterious of these relations: despite its somewhat uncertain astrophysical origins, this relation is extremely tight and linear, with 0.3 dex of scatter over five orders of magnitude in galaxy luminosity. The effects of primordial metallicities on canonical star-forming laws is an open question: a growing body of evidence suggests that the current empirical star forming laws may not be valid in the unenriched, metal-poor environment of the very early universe.

In the modern universe, nearby dwarf galaxies with less than 1/10th the Solar metal abundance provide an opportunity to recalibrate our star formation laws and study the astrophysics of extremely metal-deficient (XMD) environments in detail. I assemble a sample of nearby dwarf galaxies, all within 100 megaparsecs, with nebular oxygen abundances between 1/5th and 1/50th Solar. I identify the subsample of these galaxies with space-based mid- and far-infrared data, and investigate the effects of extreme metallicities on the infrared-radio relationship. For ten of these galaxies, I have acquired 40 hours of observations with the Jansky Very Large Array (JVLA). C-band (4-8 GHz) radio continuum emission is detected from all 10 of these galaxies. These represent the first radio continuum detections from seven galaxies in this sample: Leo A, UGC 4704, HS 0822+3542, SBS 0940+544, and SBS 1129+476. The radio continuum in these galaxies is strongly associated with the presence of optical H-alpha emission, with spectral slopes suggesting a mix of thermal and non-thermal sources. I use the ratio of the radio and far-infrared emission to investigate behavior of the C-band (4-8 GHz) radio/infrared relation at metallicities below 1/10th Solar.

I compare the low metallicity sample with the 4.8 GHz radio/infrared relationship from the KINGFISHER nearby galaxy sample Tabatabaei et al. 2017 and to the 1.4 GHz radio/infrared relationship from the blue compact dwarf galaxy sample of Wu et al. 2008. The infrared/radio ratio q of the low metallicity galaxies is below the average q of star forming galaxies in the modern universe. I compare these galaxies' infrared and radio luminosities to their corresponding Halpha luminosities, and find that both the infrared/Halpha and the radio/H-alpha ratios are reduced by nearly 1 dex in the low metallicity sample vs. higher metallicity galaxies; however the deficit is not straightforwardly interpreted as a metallicity effect.
ContributorsMonkiewicz, Jacqueline Ann (Author) / Bowman, Judd (Thesis advisor) / Scowen, Paul (Thesis advisor) / Mauskopf, Philip (Committee member) / Scannapieco, Evan (Committee member) / Jansen, Rolf (Committee member) / Arizona State University (Publisher)
Created2018