Matching Items (5)
Filtering by

Clear all filters

151168-Thumbnail Image.png
Description
A system for illuminating a sample in situ with visible and UV light inside a transmission electron microscope was devised to study photocatalysts. There are many factors which must be considered when designing and building such a system. These include both mechanical, optical, and electron optical considerations. Some of the

A system for illuminating a sample in situ with visible and UV light inside a transmission electron microscope was devised to study photocatalysts. There are many factors which must be considered when designing and building such a system. These include both mechanical, optical, and electron optical considerations. Some of the restrictions posed by the electron microscope column are significant, and care must be taken not to degrade the microscope's electron optical performance, or to unduly restrict the other current capabilities of the microscope. The nature of these various design considerations is discussed in detail. A description of the system that has been added to the microscope at ASU, an FEI Tecnai F20 environmental transmission electron microscope is also given. The system includes a high brightness broadband light source with optical filters, a fiber to guide the light to the sample, and a system for precisely aligning the fiber tip. The spatial distribution and spectrum of the light reaching the sample has been characterized, and is described in detail.
ContributorsMiller, Benjamin (Author) / Crozier, Peter A. (Thesis advisor) / McCartney, Martha (Committee member) / Rez, Peter (Committee member) / Arizona State University (Publisher)
Created2012
156600-Thumbnail Image.png
Description
In this dissertation, various characterization techniques have been used to investigate many aspects of the properties of III-nitride materials and devices for optoelectronic applications.

The first part of this work is focused on the evolution of microstructures of BAlN thin films. The films were grown by flow-modulated epitaxy at 1010

In this dissertation, various characterization techniques have been used to investigate many aspects of the properties of III-nitride materials and devices for optoelectronic applications.

The first part of this work is focused on the evolution of microstructures of BAlN thin films. The films were grown by flow-modulated epitaxy at 1010 oC, with B/(B+Al) gas-flow ratios ranging from 0.06 to 0.18. The boron content obtained from X-ray diffraction (XRD) patterns ranges from x = 0.02 to 0.09, while Rutherford backscattering spectrometry (RBS) measures x = 0.06 to 0.16. Transmission electron microscopy indicates the sole presence of the wurtzite crystal structure in the BAlN films, and a tendency towards twin formation and finer microstructure for B/(B+Al) gas-flow ratios greater than 0.15. The RBS data suggest that the incorporation of B is highly efficient, while the XRD data indicate that the epitaxial growth may be limited by a solubility limit in the crystal phase at about 9%. Electron energy loss spectroscopy has been used to profile spatial variations in the composition of the films. It has also located point defects in the films with nanometer resolution. The defects are identified as B and Al interstitials and N vacancies by comparison of the observed energy thresholds with results of density functional theory calculations.

The second part of this work investigates dislocation clusters observed in thick InxGa1-xN films with 0.07 ≤ x ≤ 0.12. The clusters resemble baskets with a higher indium content at their interior. Threading dislocations at the basket boundaries are of the misfit edge type, and their separation is consistent with misfit strain relaxation due the difference in indium content between the baskets and the surrounding matrix. The base of the baskets exhibits no observable misfit dislocations connected to the threading dislocations, and often no net displacements like those due to stacking faults. It is argued that the origin of these threading dislocation arrays is associated with misfit dislocations at the basal plane that dissociate, forming stacking faults. When the stacking faults form simultaneously satisfying the crystal symmetry, the sum of their translation vectors does add up to zero, consistent with our experimental observations.
ContributorsWang, Shuo, Ph.D (Author) / Ponce, Fernando A. (Thesis advisor) / Menéndez, Jose (Committee member) / Rez, Peter (Committee member) / McCartney, Martha (Committee member) / Arizona State University (Publisher)
Created2018
154739-Thumbnail Image.png
Description
Operando transmission electron microscopy (TEM) is an extension of in-situ TEM in which the performance of the material being observed is measured simultaneously. This is of great value, since structure-performance relationships lie at the heart of materials science. For catalyst materials, like the SiO2-supported Ru nanoparticles studied, the important performance

Operando transmission electron microscopy (TEM) is an extension of in-situ TEM in which the performance of the material being observed is measured simultaneously. This is of great value, since structure-performance relationships lie at the heart of materials science. For catalyst materials, like the SiO2-supported Ru nanoparticles studied, the important performance metric, catalyst activity, is measured inside the microscope by determining the gas composition during imaging. This is accomplished by acquisition of electron energy loss spectra (EELS) of the gas in the environmental TEM while catalysis is taking place. In this work, automated methods for rapidly quantifying low-loss and core-loss EELS of gases were developed. A new sample preparation method was also established to increase catalytic conversion inside a differentially-pumped environmental TEM, and the maximum CO conversion observed was about 80%. A system for mixing gases and delivering them to the environmental TEM was designed and built, and a method for locating and imaging nanoparticles in zone axis orientations while minimizing electron dose rate was determined.

After atomic resolution images of Ru nanoparticles observed during CO oxidation were obtained, the shape and surface structures of these particles was investigated. A Wulff model structure for Ru particles was compared to experimental images both by manually rotating the model, and by automatically determining a matching orientation using cross-correlation of shape signatures. From this analysis, it was determined that most Ru particles are close to Wulff-shaped during CO oxidation. While thick oxide layers were not observed to form on Ru during CO oxidation, thin RuO2 layers on the surface of Ru nanoparticles were imaged with atomic resolution for the first time. The activity of these layers is discussed in the context of the literature on the subject, which has thus far been inconclusive. We conclude that disordered oxidized ruthenium, rather than crystalline RuO2 is the most active species.
ContributorsMiller, Benjamin (Author) / Crozier, Peter (Thesis advisor) / Liu, Jingyue (Committee member) / McCartney, Martha (Committee member) / Rez, Peter (Committee member) / Arizona State University (Publisher)
Created2016
155448-Thumbnail Image.png
Description
In this dissertation research, conventional and aberration-corrected (AC) transmission electron microscopy (TEM) techniques were used to evaluate the structural and compositional properties of thin-film semiconductor compounds/alloys grown by molecular beam epitaxy for infrared photo-detection. Imaging, diffraction and spectroscopy techniques were applied to TEM specimens in cross-section geometry to extract information

In this dissertation research, conventional and aberration-corrected (AC) transmission electron microscopy (TEM) techniques were used to evaluate the structural and compositional properties of thin-film semiconductor compounds/alloys grown by molecular beam epitaxy for infrared photo-detection. Imaging, diffraction and spectroscopy techniques were applied to TEM specimens in cross-section geometry to extract information about extended structural defects, chemical homogeneity and interface abruptness. The materials investigated included InAs1-xBix alloys grown on GaSb (001) substrates, InAs/InAs1-xSbx type-II superlattices grown on GaSb (001) substrates, and CdTe-based thin-film structures grown on InSb (001) substrates.

The InAsBi dilute-bismide epitaxial films were grown on GaSb (001) substrates at relatively low growth temperatures. The films were mostly free of extended defects, as observed in diffraction-contrast images, but the incorporation of bismuth was not homogeneous, as manifested by the lateral Bi-composition modulation and Bi-rich surface droplets. Successful Bi incorporation into the InAs matrix was confirmed using lattice expansion measurements obtained from misfit strain analysis of high-resolution TEM (HREM) images.

Analysis of averaged intensity line profiles in HREM and scanning TEM (STEM) images of the Ga-free InAs/InAs1-xSbx type-II strained superlattices indicated slight variations in layer thickness across the superlattice stack. The interface abruptness was evaluated using misfit strain analysis of AC-STEM images, electron energy-loss spectroscopy and 002 dark-field imaging. The compositional profiles of antimony across the superlattices were fitted to a segregation model and revealed a strong antimony segregation probability.

The CdTe/MgxCd1-xTe double-heterostructures were grown with Cd overflux in a dual-chamber molecular beam epitaxy with an ultra-high vacuum transfer loadlock. Diffraction-contrast images showed that the growth temperature had a strong impact on the structural quality of the epilayers. Very abrupt CdTe/InSb interfaces were obtained for epilayers grown at the optimum temperature of 265 °C, and high-resolution imaging using AC-STEM revealed an interfacial transition region with a width of a few monolayers and smaller lattice spacing than either CdTe or InSb.
ContributorsLu, Jing (Author) / Smith, David J. (Thesis advisor) / Alford, Terry L. (Committee member) / Crozier, Peter A. (Committee member) / McCartney, Martha R. (Committee member) / Zhang, Yong-Hang (Committee member) / Arizona State University (Publisher)
Created2017
158128-Thumbnail Image.png
Description
III-V-bismide semiconductor alloys are a class of materials with applications in the mid and long wave infrared spectrum. The quaternary alloy InAsSbBi is attractive because it can be grown lattice-matched to commercially available GaSb substrates, and the adjustment of the Bi and Sb mole fractions enables both lattice constant

III-V-bismide semiconductor alloys are a class of materials with applications in the mid and long wave infrared spectrum. The quaternary alloy InAsSbBi is attractive because it can be grown lattice-matched to commercially available GaSb substrates, and the adjustment of the Bi and Sb mole fractions enables both lattice constant and bandgap to be tuned independently. This dissertation provides a comprehensive study of the surface morphology and the structural and chemical properties of InAsSbBi alloys grown by molecular beam epitaxy.

210 nm thick InAsSbBi layers grown at temperatures from 280 °C to 430 °C on (100) on-axis, (100) offcut 1° to (011), and (100) offcut 4° to (111)A GaSb substrates are investigated using Rutherford back scattering, X-ray diffraction, transmission electron microscopy, Nomarski optical microscopy, atomic force microscopy, and photoluminescence spectroscopy. The results indicate that the layers are coherently strained and contain dilute Bi mole fractions.

Large surface droplets with diameters and densities on the order of 3 µm and 106 cm-2 are observed when the growth is performed with As overpressures around 1%. Preferential orientation of the droplets occurs along the [011 ̅] step edges offcut (100) 1° to (011) substrate. The surface droplets are not observed when the As overpressure is increased to 4%. Small crystalline droplets with diameters and densities on the order of 70 nm and 1010 cm-2 are observed between the large droplets for the growth at 430°C. Analysis of one of the small droplets indicates a misoriented zinc blende structure composed of In, Sb, and Bi, with a 6.543 ± 0.038 Å lattice constant.

Lateral variation in the Bi mole fraction is observed in InAsSbBi grown at high temperature (400 °C, 420 °C) on (100) on-axis and (100) offcut 4° to (111)A substrates, but is not observed for growth at 280 °C or on (100) substrates that are offcut 1° to (011). Improved crystal and optical quality is observed in the high temperature grown InAsSbBi and CuPtB type atomic ordering on the {111}B planes is observed in the low temperature grown InAsSbBi. Strain induced tilt is observed in coherently strained InAsSbBi grown on offcut substrates.
ContributorsKosireddy, Rajeev Reddy (Author) / Johnson, Shane R (Thesis advisor) / Smith, David J. (Committee member) / Alford, Terry L. (Committee member) / Soignard, Emmanuel (Committee member) / Arizona State University (Publisher)
Created2020