Matching Items (9)
Filtering by

Clear all filters

152045-Thumbnail Image.png
Description
This thesis work mainly examined the stability and reliability issues of amorphous Indium Gallium Zinc Oxide (a-IGZO) thin film transistors under bias-illumination stress. Amorphous hydrogenated silicon has been the dominating material used in thin film transistors as a channel layer. However with the advent of modern high performance display technologies,

This thesis work mainly examined the stability and reliability issues of amorphous Indium Gallium Zinc Oxide (a-IGZO) thin film transistors under bias-illumination stress. Amorphous hydrogenated silicon has been the dominating material used in thin film transistors as a channel layer. However with the advent of modern high performance display technologies, it is required to have devices with better current carrying capability and better reproducibility. This brings the idea of new material for channel layer of these devices. Researchers have tried poly silicon materials, organic materials and amorphous mixed oxide materials as a replacement to conventional amorphous silicon layer. Due to its low price and easy manufacturing process, amorphous mixed oxide thin film transistors have become a viable option to replace the conventional ones in order to achieve high performance display circuits. But with new materials emerging, comes the challenge of reliability and stability issues associated with it. Performance measurement under bias stress and bias-illumination stress have been reported previously. This work proposes novel post processing low temperature long time annealing in optimum ambient in order to annihilate or reduce the defects and vacancies associated with amorphous material which lead to the instability or even the failure of the devices. Thin film transistors of a-IGZO has been tested for standalone illumination stress and bias-illumination stress before and after annealing. HP 4155B semiconductor parameter analyzer has been used to stress the devices and measure the output characteristics and transfer characteristics of the devices. Extra attention has been given about the effect of forming gas annealing on a-IGZO thin film. a-IGZO thin film deposited on silicon substrate has been tested for resistivity, mobility and carrier concentration before and after annealing in various ambient. Elastic Recoil Detection has been performed on the films to measure the amount of hydrogen atoms present in the film. Moreover, the circuit parameters of the thin film transistors has been extracted to verify the physical phenomenon responsible for the instability and failure of the devices. Parameters like channel resistance, carrier mobility, power factor has been extracted and variation of these parameters has been observed before and after the stress.
ContributorsRuhul Hasin, Muhammad (Author) / Alford, Terry L. (Thesis advisor) / Krause, Stephen (Committee member) / Kitchen, Jennifer (Committee member) / Arizona State University (Publisher)
Created2013
151814-Thumbnail Image.png
Description
This research emphasizes the use of low energy and low temperature post processing to improve the performance and lifetime of thin films and thin film transistors, by applying the fundamentals of interaction of materials with conductive heating and electromagnetic radiation. Single frequency microwave anneal is used to rapidly recrystallize the

This research emphasizes the use of low energy and low temperature post processing to improve the performance and lifetime of thin films and thin film transistors, by applying the fundamentals of interaction of materials with conductive heating and electromagnetic radiation. Single frequency microwave anneal is used to rapidly recrystallize the damage induced during ion implantation in Si substrates. Volumetric heating of the sample in the presence of the microwave field facilitates quick absorption of radiation to promote recrystallization at the amorphous-crystalline interface, apart from electrical activation of the dopants due to relocation to the substitutional sites. Structural and electrical characterization confirm recrystallization of heavily implanted Si within 40 seconds anneal time with minimum dopant diffusion compared to rapid thermal annealed samples. The use of microwave anneal to improve performance of multilayer thin film devices, e.g. thin film transistors (TFTs) requires extensive study of interaction of individual layers with electromagnetic radiation. This issue has been addressed by developing detail understanding of thin films and interfaces in TFTs by studying reliability and failure mechanisms upon extensive stress test. Electrical and ambient stresses such as illumination, thermal, and mechanical stresses are inflicted on the mixed oxide based thin film transistors, which are explored due to high mobilities of the mixed oxide (indium zinc oxide, indium gallium zinc oxide) channel layer material. Semiconductor parameter analyzer is employed to extract transfer characteristics, useful to derive mobility, subthreshold, and threshold voltage parameters of the transistors. Low temperature post processing anneals compatible with polymer substrates are performed in several ambients (oxygen, forming gas and vacuum) at 150 °C as a preliminary step. The analysis of the results pre and post low temperature anneals using device physics fundamentals assists in categorizing defects leading to failure/degradation as: oxygen vacancies, thermally activated defects within the bandgap, channel-dielectric interface defects, and acceptor-like or donor-like trap states. Microwave anneal has been confirmed to enhance the quality of thin films, however future work entails extending the use of electromagnetic radiation in controlled ambient to facilitate quick post fabrication anneal to improve the functionality and lifetime of these low temperature fabricated TFTs.
ContributorsVemuri, Rajitha (Author) / Alford, Terry L. (Thesis advisor) / Theodore, N David (Committee member) / Goryll, Michael (Committee member) / Arizona State University (Publisher)
Created2013
154739-Thumbnail Image.png
Description
Operando transmission electron microscopy (TEM) is an extension of in-situ TEM in which the performance of the material being observed is measured simultaneously. This is of great value, since structure-performance relationships lie at the heart of materials science. For catalyst materials, like the SiO2-supported Ru nanoparticles studied, the important performance

Operando transmission electron microscopy (TEM) is an extension of in-situ TEM in which the performance of the material being observed is measured simultaneously. This is of great value, since structure-performance relationships lie at the heart of materials science. For catalyst materials, like the SiO2-supported Ru nanoparticles studied, the important performance metric, catalyst activity, is measured inside the microscope by determining the gas composition during imaging. This is accomplished by acquisition of electron energy loss spectra (EELS) of the gas in the environmental TEM while catalysis is taking place. In this work, automated methods for rapidly quantifying low-loss and core-loss EELS of gases were developed. A new sample preparation method was also established to increase catalytic conversion inside a differentially-pumped environmental TEM, and the maximum CO conversion observed was about 80%. A system for mixing gases and delivering them to the environmental TEM was designed and built, and a method for locating and imaging nanoparticles in zone axis orientations while minimizing electron dose rate was determined.

After atomic resolution images of Ru nanoparticles observed during CO oxidation were obtained, the shape and surface structures of these particles was investigated. A Wulff model structure for Ru particles was compared to experimental images both by manually rotating the model, and by automatically determining a matching orientation using cross-correlation of shape signatures. From this analysis, it was determined that most Ru particles are close to Wulff-shaped during CO oxidation. While thick oxide layers were not observed to form on Ru during CO oxidation, thin RuO2 layers on the surface of Ru nanoparticles were imaged with atomic resolution for the first time. The activity of these layers is discussed in the context of the literature on the subject, which has thus far been inconclusive. We conclude that disordered oxidized ruthenium, rather than crystalline RuO2 is the most active species.
ContributorsMiller, Benjamin (Author) / Crozier, Peter (Thesis advisor) / Liu, Jingyue (Committee member) / McCartney, Martha (Committee member) / Rez, Peter (Committee member) / Arizona State University (Publisher)
Created2016
155448-Thumbnail Image.png
Description
In this dissertation research, conventional and aberration-corrected (AC) transmission electron microscopy (TEM) techniques were used to evaluate the structural and compositional properties of thin-film semiconductor compounds/alloys grown by molecular beam epitaxy for infrared photo-detection. Imaging, diffraction and spectroscopy techniques were applied to TEM specimens in cross-section geometry to extract information

In this dissertation research, conventional and aberration-corrected (AC) transmission electron microscopy (TEM) techniques were used to evaluate the structural and compositional properties of thin-film semiconductor compounds/alloys grown by molecular beam epitaxy for infrared photo-detection. Imaging, diffraction and spectroscopy techniques were applied to TEM specimens in cross-section geometry to extract information about extended structural defects, chemical homogeneity and interface abruptness. The materials investigated included InAs1-xBix alloys grown on GaSb (001) substrates, InAs/InAs1-xSbx type-II superlattices grown on GaSb (001) substrates, and CdTe-based thin-film structures grown on InSb (001) substrates.

The InAsBi dilute-bismide epitaxial films were grown on GaSb (001) substrates at relatively low growth temperatures. The films were mostly free of extended defects, as observed in diffraction-contrast images, but the incorporation of bismuth was not homogeneous, as manifested by the lateral Bi-composition modulation and Bi-rich surface droplets. Successful Bi incorporation into the InAs matrix was confirmed using lattice expansion measurements obtained from misfit strain analysis of high-resolution TEM (HREM) images.

Analysis of averaged intensity line profiles in HREM and scanning TEM (STEM) images of the Ga-free InAs/InAs1-xSbx type-II strained superlattices indicated slight variations in layer thickness across the superlattice stack. The interface abruptness was evaluated using misfit strain analysis of AC-STEM images, electron energy-loss spectroscopy and 002 dark-field imaging. The compositional profiles of antimony across the superlattices were fitted to a segregation model and revealed a strong antimony segregation probability.

The CdTe/MgxCd1-xTe double-heterostructures were grown with Cd overflux in a dual-chamber molecular beam epitaxy with an ultra-high vacuum transfer loadlock. Diffraction-contrast images showed that the growth temperature had a strong impact on the structural quality of the epilayers. Very abrupt CdTe/InSb interfaces were obtained for epilayers grown at the optimum temperature of 265 °C, and high-resolution imaging using AC-STEM revealed an interfacial transition region with a width of a few monolayers and smaller lattice spacing than either CdTe or InSb.
ContributorsLu, Jing (Author) / Smith, David J. (Thesis advisor) / Alford, Terry L. (Committee member) / Crozier, Peter A. (Committee member) / McCartney, Martha R. (Committee member) / Zhang, Yong-Hang (Committee member) / Arizona State University (Publisher)
Created2017
149554-Thumbnail Image.png
Description
The object of this study is to investigate and improve the performance/stability of the flexible thin film transistors (TFTs) and to study the properties of metal oxide transparent conductive oxides for wide range of flexible electronic applications. Initially, a study has been done to improve the conductivity of ITO (indium

The object of this study is to investigate and improve the performance/stability of the flexible thin film transistors (TFTs) and to study the properties of metal oxide transparent conductive oxides for wide range of flexible electronic applications. Initially, a study has been done to improve the conductivity of ITO (indium tin oxide) films on PEN (polyethylene naphthalate) by inserting a thin layer of silver layer between two ITO layers. The multilayer with an optimum Ag mid-layer thickness, of 8 nm, exhibited excellent photopic average transmittance (~ 88 %), resistivity (~ 2.7 × 10-5 µ-cm.) and has the best Hackee figure of merit (41.0 × 10-3 Ω-1). The electrical conduction is dominated by two different scattering mechanisms depending on the thickness of the Ag mid-layer. Optical transmission is explained by scattering losses and absorption of light due to inter-band electronic transitions. A systematic study was carried out to improve the performance/stability of the TFTs on PEN. The performance and stability of a-Si:H and a-IZO (amorphous indium zinc oxide) TFTs were improved by performing a systematic low temperature (150 °C) anneals for extended times. For 96 hours annealed a-Si:H TFTs, the sub-threshold slope and off-current were reduced by a factor ~ 3 and by 2 orders of magnitude, respectively when compared to unannealed a-Si:H TFTs. For a-IZO TFTs, 48 hours of annealing is found to be the optimum time for the best performance and elevated temperature stability. These devices exhibit saturation mobility varying between 4.5-5.5 cm2/V-s, ION/IOFF ratio was 106 and a sub-threshold swing variation of 1-1.25 V/decade. An in-depth study on the mechanical and electromechanical stress response on the electrical properties of the a-IZO TFTs has also been investigated. Finally, the a-Si:H TFTs were exposed to gamma radiation to examine their radiation resistance. The interface trap density (Nit) values range from 5 to 6 × 1011 cm-2 for only electrical stress bias case. For "irradiation only" case, the Nit value increases from 5×1011 cm-2 to 2×1012 cm-2 after 3 hours of gamma radiation exposure, whereas it increases from 5×1011 cm-2 to 4×1012 cm-2 for "combined gamma and electrical stress".
ContributorsIndluru, Anil (Author) / Alford, Terry L. (Thesis advisor) / Schroder, Dieter (Committee member) / Krause, Stephen (Committee member) / Theodore, David (Committee member) / Arizona State University (Publisher)
Created2011
157552-Thumbnail Image.png
Description
Non-stoichiometric oxides play a critical role in many catalytic, energy, and sensing technologies, providing the ability to reversibly exchange oxygen with the ambient environment through the creation and annihilation of surface oxygen vacancies. Oxygen exchange at the surfaces of these materials is strongly influenced by atomic structure, which varies significantly

Non-stoichiometric oxides play a critical role in many catalytic, energy, and sensing technologies, providing the ability to reversibly exchange oxygen with the ambient environment through the creation and annihilation of surface oxygen vacancies. Oxygen exchange at the surfaces of these materials is strongly influenced by atomic structure, which varies significantly across nanoparticle surfaces. The studies presented herein elucidate the relationship between surface structure behaviors and oxygen exchange reactions on ceria (CeO2) catalyst materials. In situ aberration-corrected transmission electron microscopy (AC-TEM) techniques were developed and employed to correlate dynamic atomic-level structural heterogeneities to local oxygen vacancy activity.

A model Ni/CeO2 catalyst was used to probe the role of a ceria support during hydrocarbon reforming reactions, and it was revealed that carbon formation was inhibited on Ni metal nanoparticles due to the removal of lattice oxygen from the ceria support and subsequent oxidation of adsorbed decomposed hydrocarbon products. Atomic resolution observations of surface oxygen vacancy creation and annihilation were performed on CeO2 nanoparticle surfaces using a novel time-resolved in situ AC-TEM approach. Cation displacements were found to be related to oxygen vacancy creation and annihilation, and the most reactive surface oxygen sites were identified by monitoring the frequency of cation displacements. In addition, the dynamic evolution of CeO2 surface structures was characterized with high temporal resolution AC-TEM imaging, which resulted in atomic column positions and occupancies to be determined with a combination of spatial precision and temporal resolution that had not previously been achieved. As a result, local lattice expansions and contractions were observed on ceria surfaces, which were likely related to cyclic oxygen vacancy activity. Finally, local strain fields on CeO2 surfaces were quantified, and it was determined that local strain enhanced the ability of a surface site to create oxygen vacancies. Through the characterization of dynamic surface structures with advanced AC-TEM techniques, an improvement in the fundamental understanding of how ceria surfaces influence and control oxygen exchange reactions was obtained.
ContributorsLawrence, Ethan Lee (Author) / Crozier, Peter A. (Thesis advisor) / Lin, Jerry (Committee member) / Liu, Jingyue (Committee member) / Petuskey, William (Committee member) / Arizona State University (Publisher)
Created2019
158128-Thumbnail Image.png
Description
III-V-bismide semiconductor alloys are a class of materials with applications in the mid and long wave infrared spectrum. The quaternary alloy InAsSbBi is attractive because it can be grown lattice-matched to commercially available GaSb substrates, and the adjustment of the Bi and Sb mole fractions enables both lattice constant

III-V-bismide semiconductor alloys are a class of materials with applications in the mid and long wave infrared spectrum. The quaternary alloy InAsSbBi is attractive because it can be grown lattice-matched to commercially available GaSb substrates, and the adjustment of the Bi and Sb mole fractions enables both lattice constant and bandgap to be tuned independently. This dissertation provides a comprehensive study of the surface morphology and the structural and chemical properties of InAsSbBi alloys grown by molecular beam epitaxy.

210 nm thick InAsSbBi layers grown at temperatures from 280 °C to 430 °C on (100) on-axis, (100) offcut 1° to (011), and (100) offcut 4° to (111)A GaSb substrates are investigated using Rutherford back scattering, X-ray diffraction, transmission electron microscopy, Nomarski optical microscopy, atomic force microscopy, and photoluminescence spectroscopy. The results indicate that the layers are coherently strained and contain dilute Bi mole fractions.

Large surface droplets with diameters and densities on the order of 3 µm and 106 cm-2 are observed when the growth is performed with As overpressures around 1%. Preferential orientation of the droplets occurs along the [011 ̅] step edges offcut (100) 1° to (011) substrate. The surface droplets are not observed when the As overpressure is increased to 4%. Small crystalline droplets with diameters and densities on the order of 70 nm and 1010 cm-2 are observed between the large droplets for the growth at 430°C. Analysis of one of the small droplets indicates a misoriented zinc blende structure composed of In, Sb, and Bi, with a 6.543 ± 0.038 Å lattice constant.

Lateral variation in the Bi mole fraction is observed in InAsSbBi grown at high temperature (400 °C, 420 °C) on (100) on-axis and (100) offcut 4° to (111)A substrates, but is not observed for growth at 280 °C or on (100) substrates that are offcut 1° to (011). Improved crystal and optical quality is observed in the high temperature grown InAsSbBi and CuPtB type atomic ordering on the {111}B planes is observed in the low temperature grown InAsSbBi. Strain induced tilt is observed in coherently strained InAsSbBi grown on offcut substrates.
ContributorsKosireddy, Rajeev Reddy (Author) / Johnson, Shane R (Thesis advisor) / Smith, David J. (Committee member) / Alford, Terry L. (Committee member) / Soignard, Emmanuel (Committee member) / Arizona State University (Publisher)
Created2020
158490-Thumbnail Image.png
Description
Extended crystal defects often play a critical role in determining semiconductor device performance. This dissertation describes the application of transmission electron microscopy (TEM) and aberration-corrected scanning TEM (AC-STEM) to study defect clusters and the atomic-scale structure of defects in compound semiconductors.

An extensive effort was made to identify specific locations of

Extended crystal defects often play a critical role in determining semiconductor device performance. This dissertation describes the application of transmission electron microscopy (TEM) and aberration-corrected scanning TEM (AC-STEM) to study defect clusters and the atomic-scale structure of defects in compound semiconductors.

An extensive effort was made to identify specific locations of crystal defects in epitaxial CdTe that might contribute to degraded light-conversion efficiency. Electroluminescence (EL) mapping and the creation of surface etch pits through chemical treatment were combined in attempts to identify specific structural defects for subsequent TEM examination. Observations of these specimens revealed only surface etch pits, without any visible indication of extended defects near their base. While chemical etch pits could be helpful for precisely locating extended defects that intersect with the treated surface, this study concluded that surface roughness surrounding etch pits would likely mitigate against their usefulness.

Defect locations in GaAs solar-cell devices were identified using combinations of EL, photoluminescence, and Raman scattering, and then studied more closely using TEM. Observations showed that device degradation was invariably associated with a cluster of extended defects, rather than a single defect, as previously assumed. AC-STEM observations revealed that individual defects within each cluster consisted primarily of intrinsic stacking faults terminated by 30° and 90° partial dislocations, although other defect structures were also identified. Lomer dislocations were identified near locations where two lines of strain contrast intersected in a large cluster, and a comparatively shallow cluster, largely constrained to the GaAs emitter layer, contained 60° perfect dislocations associated with localized strain contrast.

In another study, misfit dislocations at II-VI/III-V heterovalent interfaces were investigated and characterized using AC-STEM. Misfit strain at ZnTe/GaAs interfaces, which have relatively high lattice mismatch (7.38%), was relieved primarily through Lomer dislocations, while ZnTe/InP interfaces, with only 3.85% lattice mismatch, were relaxed by a mixture of 60° perfect dislocations, 30° partial dislocations, and Lomer dislocations. These results were consistent with the previous findings that misfit strain was relaxed primarily through 60° perfect dislocations that had either dissociated into partial dislocations or interacted to form Lomer dislocations as the amount of misfit strain increased.
ContributorsMcKeon, Brandon (Author) / Smith, David J. (Thesis advisor) / McCartney, Martha R. (Thesis advisor) / Liu, Jingyue (Committee member) / Zhang, Yong-Hang (Committee member) / Arizona State University (Publisher)
Created2020
157845-Thumbnail Image.png
Description
Photocatalytic water splitting over suspended nanoparticles represents a potential solution for achieving CO2-neutral energy generation and storage. To design efficient photocatalysts, a fundamental understanding of the material’s structure, electronic properties, defects, and how these are controlled via synthesis is essential. Both bulk and nanoscale materials characterization, in addition to various

Photocatalytic water splitting over suspended nanoparticles represents a potential solution for achieving CO2-neutral energy generation and storage. To design efficient photocatalysts, a fundamental understanding of the material’s structure, electronic properties, defects, and how these are controlled via synthesis is essential. Both bulk and nanoscale materials characterization, in addition to various performance metrics, can be combined to elucidate functionality at multiple length scales. In this work, two promising visible light harvesting systems are studied in detail: Pt-functionalized graphitic carbon nitrides (g-CNxHys) and TiO2-supported CeO2-x composites.

Electron energy-loss spectroscopy (EELS) is used to sense variations in the local concentration of amine moieties (defects believed to facilitate interfacial charge transfer) at the surface of a g-CNxHy flake. Using an aloof-beam configuration, spatial resolution is maximized while minimizing damage thus providing nanoscale vibrational fingerprints similar to infrared absorption spectra. Structural disorder in g-CNxHys is further studied using transmission electron microscopy at low electron fluence rates. In-plane structural fluctuations revealed variations in the local azimuthal orientation of the heptazine building blocks, allowing planar domain sizes to be related to the average polymer chain length. Furthermore, competing factors regulating photocatalytic performance in a series of Pt/g-CNxHys is elucidated. Increased polymer condensation in the g-CNxHy support enhances the rate of charge transfer to reactants owing to higher electronic mobility. However, active site densities are over 3x lower on the most condensed g-CNxHy which ultimately limits its H2 evolution rate (HER). Based on these findings, strategies to improve the cocatalyst configuration on intrinsically active supports are given.

In TiO2/CeO2-x photocatalysts, the effect of the support particle size on the bulk
anoscale properties and photocatalytic performance is investigated. Small anatase supports facilitate highly dispersed CeO2-x species, leading to increased visible light absorption and HERs resulting from a higher density of mixed metal oxide (MMO) interfaces with Ce3+ species. Using monochromated EELS, bandgap states associated with MMO interfaces are detected, revealing electronic transitions from 0.5 eV up to the bulk bandgap onset of anatase. Overall, the electron microscopy/spectroscopy techniques developed and applied herein sheds light onto the relevant defects and limiting processes operating within these photocatalyst systems thus suggesting rational design strategies.
ContributorsHaiber, Diane Michelle (Author) / Crozier, Peter (Thesis advisor) / Chan, Candace (Committee member) / Liu, Jingyue (Committee member) / Treacy, Michael (Committee member) / Arizona State University (Publisher)
Created2019