Matching Items (5)
Filtering by

Clear all filters

152020-Thumbnail Image.png
Description
The purpose of this pilot randomized control trial was to test the initial efficacy of a 10 week social cognitive theory (SCT)-based intervention to reduce workplace sitting time (ST). Participants were currently employed adults with predominantly sedentary occupations (n=24) working in the Greater Phoenix area in 2012-2013. Participants wore an

The purpose of this pilot randomized control trial was to test the initial efficacy of a 10 week social cognitive theory (SCT)-based intervention to reduce workplace sitting time (ST). Participants were currently employed adults with predominantly sedentary occupations (n=24) working in the Greater Phoenix area in 2012-2013. Participants wore an activPAL (AP) inclinometer to assess postural allocation (i.e., sitting vs. standing) and Actigraph accelerometer (AG) to assess sedentary time for one week prior to beginning and immediately following the completion of the 10 week intervention. Self-reported measures of sedentary time were obtained via two validated questionnaires for overall (International Physical Activity Questionnaire [IPAQ]) and domain specific sedentary behaviors (Sedentary Behavior Questionnaire [SBQ]). SCT constructs were also measured pre and post via adapted physical activity questionnaires. Participants were randomly assigned to receive either (a) 10 weekly social cognitive-based e-newsletters focused on reducing workplace ST; or (b) similarly formatted 10 weekly e-newsletters focusing on health education. Baseline adjusted Analysis of Covariance statistical analyses were used to examine differences between groups in time spent sitting (AP) and sedentary (AG) during self-reported work hours from pre- to post- intervention. Both groups decreased ST and AG sedentary time; however, no significant differences were observed. SCT constructs also did not change significantly between pretest and post test in either group. These results indicate that individualized educational approaches to decreasing workplace sitting time may not be sufficient for observing long term change in behaviors. Future research should utilize a larger sample, measure main outcomes more frequently, and incorporate more environmental factors throughout the intervention.
ContributorsGordon, Amanda (Author) / Buman, Matthew (Thesis advisor) / Der Ananian, Cheryl (Committee member) / Swan, Pamela (Committee member) / Arizona State University (Publisher)
Created2013
151476-Thumbnail Image.png
Description
The health benefits of physical activity are widely accepted. Emerging research also indicates that sedentary behaviors can carry negative health consequences regardless of physical activity level. This dissertation explored four projects that examined measurement properties of physical activity and sedentary behavior monitors. Project one identified the oxygen costs of four

The health benefits of physical activity are widely accepted. Emerging research also indicates that sedentary behaviors can carry negative health consequences regardless of physical activity level. This dissertation explored four projects that examined measurement properties of physical activity and sedentary behavior monitors. Project one identified the oxygen costs of four other care activities in seventeen adults. Pushing a wheelchair and pushing a stroller were identified as moderate-intensity activities. Minutes spent engaged in these activities contribute towards meeting the 2008 Physical Activity Guidelines. Project two identified the oxygen costs of common cleaning activities in sixteen adults. Mopping a floor was identified as moderate-intensity physical activity, while cleaning a kitchen and cleaning a bathtub were identified as light-intensity physical activity. Minutes spent engaged in mopping a floor contributes towards meeting the 2008 Physical Activity Guidelines. Project three evaluated the differences in number of minutes spent in activity levels when utilizing different epoch lengths in accelerometry. A shorter epoch length (1-second, 5-seconds) accumulated significantly more minutes of sedentary behaviors than a longer epoch length (60-seconds). The longer epoch length also identified significantly more time engaged in light-intensity activities than the shorter epoch lengths. Future research needs to account for epoch length selection when conducting physical activity and sedentary behavior assessment. Project four investigated the accuracy of four activity monitors in assessing activities that were either sedentary behaviors or light-intensity physical activities. The ActiGraph GT3X+ assessed the activities least accurately, while the SenseWear Armband and ActivPAL assessed activities equally accurately. The monitor used to assess physical activity and sedentary behaviors may influence the accuracy of the measurement of a construct.
ContributorsMeckes, Nathanael (Author) / Ainsworth, Barbara E (Thesis advisor) / Belyea, Michael (Committee member) / Buman, Matthew (Committee member) / Gaesser, Glenn (Committee member) / Wharton, Christopher (Christopher Mack), 1977- (Committee member) / Arizona State University (Publisher)
Created2012
153035-Thumbnail Image.png
Description
Dimensional Metrology is the branch of science that determines length, angular, and geometric relationships within manufactured parts and compares them with required tolerances. The measurements can be made using either manual methods or sampled coordinate metrology (Coordinate measuring machines). Manual measurement methods have been in practice for a long time

Dimensional Metrology is the branch of science that determines length, angular, and geometric relationships within manufactured parts and compares them with required tolerances. The measurements can be made using either manual methods or sampled coordinate metrology (Coordinate measuring machines). Manual measurement methods have been in practice for a long time and are well accepted in the industry, but are slow for the present day manufacturing. On the other hand CMMs are relatively fast, but these methods are not well established yet. The major problem that needs to be addressed is the type of feature fitting algorithm used for evaluating tolerances. In a CMM the use of different feature fitting algorithms on a feature gives different values, and there is no standard that describes the type of feature fitting algorithm to be used for a specific tolerance. Our research is focused on identifying the feature fitting algorithm that is best used for each type of tolerance. Each algorithm is identified as the one to best represent the interpretation of geometric control as defined by the ASME Y14.5 standard and on the manual methods used for the measurement of a specific tolerance type. Using these algorithms normative procedures for CMMs are proposed for verifying tolerances. The proposed normative procedures are implemented as software. Then the procedures are verified by comparing the results from software with that of manual measurements.

To aid this research a library of feature fitting algorithms is developed in parallel. The library consists of least squares, Chebyshev and one sided fits applied on the features of line, plane, circle and cylinder. The proposed normative procedures are useful for evaluating tolerances in CMMs. The results evaluated will be in accordance to the standard. The ambiguity in choosing the algorithms is prevented. The software developed can be used in quality control for inspection purposes.
ContributorsVemulapalli, Prabath (Author) / Shah, Jami J. (Thesis advisor) / Davidson, Joseph K. (Committee member) / Takahashi, Timothy (Committee member) / Arizona State University (Publisher)
Created2014
154976-Thumbnail Image.png
Description
Metal castings are selectively machined-based on dimensional control requirements. To ensure that all the finished surfaces are fully machined, each as-cast part needs to be measured and then adjusted optimally in its fixture. The topics of this thesis address two parts of this process: data translations and feature-fitting clouds of

Metal castings are selectively machined-based on dimensional control requirements. To ensure that all the finished surfaces are fully machined, each as-cast part needs to be measured and then adjusted optimally in its fixture. The topics of this thesis address two parts of this process: data translations and feature-fitting clouds of points measured on each cast part. For the first, a CAD model of the finished part is required to be communicated to the machine shop for performing various machining operations on the metal casting. The data flow must include GD&T specifications along with other special notes that may be required to communicate to the machinist. Current data exchange, among various digital applications, is limited to translation of only CAD geometry via STEP AP203. Therefore, an algorithm is developed in order to read, store and translate the data from a CAD file (for example SolidWorks, CREO) to a standard and machine readable format (ACIS format - *.sat). Second, the geometry of cast parts varies from piece to piece and hence fixture set-up parameters for each part must be adjusted individually. To predictively determine these adjustments, the datum surfaces, and to-be-machined surfaces are scanned individually and the point clouds reduced to feature fits. The scanned data are stored as separate point cloud files. The labels associated with the datum and to-be-machined (TBM) features are extracted from the *.sat file. These labels are further matched with the file name of the point cloud data to identify data for the respective features. The point cloud data and the CAD model are then used to fit the appropriate features (features at maximum material condition (MMC) for datums and features at least material condition (LMC) for TBM features) using the existing normative feature fitting (nFF) algorithm. Once the feature fitting is complete, a global datum reference frame (GDRF) is constructed based on the locating method that will be used to machine the part. The locating method is extracted from a fixture library that specifies the type of fixturing used to machine the part. All entities are transformed from its local coordinate system into the GDRF. The nominal geometry, fitted features, and the GD&T information are then stored in a neutral file format called the Constraint Tolerance Feature (CTF) Graph. The final outputs are then used to identify the locations of the critical features on each part and these are used to establish the adjustments for its setup prior to machining, in another module, not part of this thesis.
ContributorsRamnath, Satchit (Author) / Shah, Jami J. (Thesis advisor) / Davidson, Joseph (Committee member) / Hansford, Dianne (Committee member) / Arizona State University (Publisher)
Created2016
155443-Thumbnail Image.png
Description
Physical activity, sedentary behaviors, and sleep are often associated with cardiometabolic biomarkers commonly found in metabolic syndrome. These relationships are well studied, and yet there are still questions on how each activity may affect cardiometabolic biomarkers. The objective of this study was to examine data from the BeWell24 studies to

Physical activity, sedentary behaviors, and sleep are often associated with cardiometabolic biomarkers commonly found in metabolic syndrome. These relationships are well studied, and yet there are still questions on how each activity may affect cardiometabolic biomarkers. The objective of this study was to examine data from the BeWell24 studies to evaluate the relationship between objectively measured physical activity and sedentary behaviors and cardiometabolic biomarkers in middle age adults, while also determining if sleep quality and duration mediates this relationship. A group of inactive participants (N = 29, age = 52.1 ± 8.1 years, 38% female) with increased risk for cardiometabolic disease were recruited to participate in BeWell24, a trial testing the impact of a lifestyle-based, multicomponent smartphone application targeting sleep, sedentary, and more active behaviors. During baseline, interim (4 weeks), and posttest visits (8 weeks), biomarker measurements were collected for weight (kg), waist circumference (cm), glucose (mg/dl), insulin (uU/ml), lipids (mg/dl), diastolic and systolic blood pressures (mm Hg), and C reactive protein (mg/L). Participants wore validated wrist and thigh sensors for one week intervals at each time point to measure sedentary behavior, physical activity, and sleep outcomes. Long bouts of sitting time (>30 min) significantly affected triglycerides (beta = .15 (±.07), p<.03); however, no significant mediation effects for sleep quality or duration were present. No other direct effects were observed between physical activity measurements and cardiometabolic biomarkers. The findings of this study suggest that reductions in long bouts of sitting time may support reductions in triglycerides, yet these effects were not mediated by sleep-related improvements.
ContributorsLanich, Boyd (Author) / Buman, Matthew (Thesis advisor) / Ainsworth, Barbara (Committee member) / Huberty, Jennifer (Committee member) / Arizona State University (Publisher)
Created2017