Matching Items (5)
Filtering by

Clear all filters

150689-Thumbnail Image.png
Description
The Quantum Harmonic Oscillator is one of the most important models in Quantum Mechanics. Analogous to the classical mass vibrating back and forth on a spring, the quantum oscillator system has attracted substantial attention over the years because of its importance in many advanced and difficult quantum problems. This dissertation

The Quantum Harmonic Oscillator is one of the most important models in Quantum Mechanics. Analogous to the classical mass vibrating back and forth on a spring, the quantum oscillator system has attracted substantial attention over the years because of its importance in many advanced and difficult quantum problems. This dissertation deals with solving generalized models of the time-dependent Schrodinger equation which are called generalized quantum harmonic oscillators, and these are characterized by an arbitrary quadratic Hamiltonian of linear momentum and position operators. The primary challenge in this work is that most quantum models with timedependence are not solvable explicitly, yet this challenge became the driving motivation for this work. In this dissertation, the methods used to solve the time-dependent Schrodinger equation are the fundamental singularity (or Green's function) and the Fourier (eigenfunction expansion) methods. Certain Riccati- and Ermakov-type systems arise, and these systems are highlighted and investigated. The overall aims of this dissertation are to show that quadratic Hamiltonian systems are completely integrable systems, and to provide explicit approaches to solving the time-dependent Schr¨odinger equation governed by an arbitrary quadratic Hamiltonian operator. The methods and results established in the dissertation are not yet well recognized in the literature, yet hold for high promise for further future research. Finally, the most recent results in the dissertation correspond to the harmonic oscillator group and its symmetries. A simple derivation of the maximum kinematical invariance groups of the free particle and quantum harmonic oscillator is constructed from the view point of the Riccati- and Ermakov-type systems, which shows an alternative to the traditional Lie Algebra approach. To conclude, a missing class of solutions of the time-dependent Schr¨odinger equation for the simple harmonic oscillator in one dimension is constructed. Probability distributions of the particle linear position and momentum, are emphasized with Mathematica animations. The eigenfunctions qualitatively differ from the traditional standing waves of the one-dimensional Schrodinger equation. The physical relevance of these dynamic states is still questionable, and in order to investigate their physical meaning, animations could also be created for the squeezed coherent states. This will be addressed in future work.
ContributorsLopez, Raquel (Author) / Suslov, Sergei K (Thesis advisor) / Radunskaya, Ami (Committee member) / Castillo-Chavez, Carlos (Committee member) / Platte, Rodrigo (Committee member) / Arizona State University (Publisher)
Created2012
137504-Thumbnail Image.png
Description
The reconstruction of piecewise smooth functions from non-uniform Fourier data arises in sensing applications such as magnetic resonance imaging (MRI). This thesis presents a new polynomial based resampling method (PRM) for 1-dimensional problems which uses edge information to recover the Fourier transform at its integer coefficients, thereby enabling the use

The reconstruction of piecewise smooth functions from non-uniform Fourier data arises in sensing applications such as magnetic resonance imaging (MRI). This thesis presents a new polynomial based resampling method (PRM) for 1-dimensional problems which uses edge information to recover the Fourier transform at its integer coefficients, thereby enabling the use of the inverse fast Fourier transform algorithm. By minimizing the error of the PRM approximation at the sampled Fourier modes, the PRM can also be used to improve on initial edge location estimates. Numerical examples show that using the PRM to improve on initial edge location estimates and then taking of the PRM approximation of the integer frequency Fourier coefficients is a viable way to reconstruct the underlying function in one dimension. In particular, the PRM is shown to converge more quickly and to be more robust than current resampling techniques used in MRI, and is particularly amenable to highly irregular sampling patterns.
ContributorsGutierrez, Alexander Jay (Author) / Platte, Rodrigo (Thesis director) / Gelb, Anne (Committee member) / Viswanathan, Adityavikram (Committee member) / Barrett, The Honors College (Contributor) / School of International Letters and Cultures (Contributor) / School of Mathematical and Statistical Sciences (Contributor)
Created2013-05
154866-Thumbnail Image.png
Description
Chapter 1 introduces some key elements of important topics such as; quantum mechanics,

representation theory of the Lorentz and Poincare groups, and a review of some basic rela- ´

tivistic wave equations that will play an important role in the work to follow. In Chapter 2,

a complex covariant form of the classical

Chapter 1 introduces some key elements of important topics such as; quantum mechanics,

representation theory of the Lorentz and Poincare groups, and a review of some basic rela- ´

tivistic wave equations that will play an important role in the work to follow. In Chapter 2,

a complex covariant form of the classical Maxwell’s equations in a moving medium or at

rest is introduced. In addition, a compact, Lorentz invariant, form of the energy-momentum

tensor is derived. In chapter 3, the concept of photon helicity is critically analyzed and its

connection with the Pauli-Lubanski vector from the viewpoint of the complex electromag- ´

netic field, E+ iH. To this end, a complex covariant form of Maxwell’s equations is used.

Chapter 4 analyzes basic relativistic wave equations for the classical fields, such as Dirac’s

equation, Weyl’s two-component equation for massless neutrinos and the Proca, Maxwell

and Fierz-Pauli equations, from the viewpoint of the Pauli-Lubanski vector and the Casimir ´

operators of the Poincare group. A connection between the spin of a particle/field and ´

consistency of the corresponding overdetermined system is emphasized in the massless

case. Chapter 5 focuses on the so-called generalized quantum harmonic oscillator, which

is a Schrodinger equation with a time-varying quadratic Hamiltonian operator. The time ¨

evolution of exact wave functions of the generalized harmonic oscillators is determined

in terms of the solutions of certain Ermakov and Riccati-type systems. In addition, it is

shown that the classical Arnold transform is naturally connected with Ehrenfest’s theorem

for generalized harmonic oscillators. In Chapter 6, as an example of the usefulness of the

methods introduced in Chapter 5 a model for the quantization of an electromagnetic field

in a variable media is analyzed. The concept of quantization of an electromagnetic field

in factorizable media is discussed via the Caldirola-Kanai Hamiltonian. A single mode

of radiation for this model is used to find time-dependent photon amplitudes in relation

to Fock states. A multi-parameter family of the squeezed states, photon statistics, and the

uncertainty relation, are explicitly given in terms of the Ermakov-type system.
ContributorsLanfear, Nathan A (Author) / Suslov, Sergei (Thesis advisor) / Kotschwar, Brett (Thesis advisor) / Platte, Rodrigo (Committee member) / Matyushov, Dmitry (Committee member) / Kuiper, Hendrik (Committee member) / Gardner, Carl (Committee member) / Arizona State University (Publisher)
Created2016
137687-Thumbnail Image.png
Description
The recovery of edge information in the physical domain from non-uniform Fourier data is of importance in a variety of applications, particularly in the practice of magnetic resonance imaging (MRI). Edge detection can be important as a goal in and of itself in the identification of tissue boundaries such as

The recovery of edge information in the physical domain from non-uniform Fourier data is of importance in a variety of applications, particularly in the practice of magnetic resonance imaging (MRI). Edge detection can be important as a goal in and of itself in the identification of tissue boundaries such as those defining the locations of tumors. It can also be an invaluable tool in the amelioration of the negative effects of the Gibbs phenomenon on reconstructions of functions with discontinuities or images in multi-dimensions with internal edges. In this thesis we develop a novel method for recovering edges from non-uniform Fourier data by adapting the "convolutional gridding" method of function reconstruction. We analyze the behavior of the method in one dimension and then extend it to two dimensions on several examples.
ContributorsMartinez, Adam (Author) / Gelb, Anne (Thesis director) / Cochran, Douglas (Committee member) / Platte, Rodrigo (Committee member) / Barrett, The Honors College (Contributor) / School of Mathematical and Statistical Sciences (Contributor)
Created2013-05
157651-Thumbnail Image.png
Description
This dissertation develops a second order accurate approximation to the magnetic resonance (MR) signal model used in the PARSE (Parameter Assessment by Retrieval from Single Encoding) method to recover information about the reciprocal of the spin-spin relaxation time function (R2*) and frequency offset function (w) in addition to the typical

This dissertation develops a second order accurate approximation to the magnetic resonance (MR) signal model used in the PARSE (Parameter Assessment by Retrieval from Single Encoding) method to recover information about the reciprocal of the spin-spin relaxation time function (R2*) and frequency offset function (w) in addition to the typical steady-state transverse magnetization (M) from single-shot magnetic resonance imaging (MRI) scans. Sparse regularization on an approximation to the edge map is used to solve the associated inverse problem. Several studies are carried out for both one- and two-dimensional test problems, including comparisons to the first order approximation method, as well as the first order approximation method with joint sparsity across multiple time windows enforced. The second order accurate model provides increased accuracy while reducing the amount of data required to reconstruct an image when compared to piecewise constant in time models. A key component of the proposed technique is the use of fast transforms for the forward evaluation. It is determined that the second order model is capable of providing accurate single-shot MRI reconstructions, but requires an adequate coverage of k-space to do so. Alternative data sampling schemes are investigated in an attempt to improve reconstruction with single-shot data, as current trajectories do not provide ideal k-space coverage for the proposed method.
ContributorsJesse, Aaron Mitchel (Author) / Platte, Rodrigo (Thesis advisor) / Gelb, Anne (Committee member) / Kostelich, Eric (Committee member) / Mittelmann, Hans (Committee member) / Moustaoui, Mohamed (Committee member) / Arizona State University (Publisher)
Created2019