Matching Items (5)
Filtering by

Clear all filters

136804-Thumbnail Image.png
Description
The quality of user interface designs largely depends on the aptitude of the designer. The ability to generate mental abstract models and characterize a target user audience helps greatly when conceiving a design. The dry cleaning point-of-sale industry lacks quality user interface designs. These impaired interfaces were compared with textbook

The quality of user interface designs largely depends on the aptitude of the designer. The ability to generate mental abstract models and characterize a target user audience helps greatly when conceiving a design. The dry cleaning point-of-sale industry lacks quality user interface designs. These impaired interfaces were compared with textbook design techniques to discover how applicable published interface design concepts are in practice. Four variations of a software package were deployed to end users. Each variation contained different design techniques. Surveyed users responded positively to interface design practices that were consistent and easy to learn. This followed textbook expectations. Users however responded poorly to customization options, an important feature according to textbook material. The study made conservative changes to the four interface variations provided to end-users. A more liberal approach may have yielded additional results.
ContributorsSmith, Andrew David (Author) / Nakamura, Mutsumi (Thesis director) / Gottesman, Aaron (Committee member) / Barrett, The Honors College (Contributor) / Electrical Engineering Program (Contributor)
Created2014-05
137541-Thumbnail Image.png
Description
Over the course of computing history there have been many ways for humans to pass information to computers. These different input types, at first, tended to be used one or two at a time for the users interfacing with computers. As time has progressed towards the present, however, many devices

Over the course of computing history there have been many ways for humans to pass information to computers. These different input types, at first, tended to be used one or two at a time for the users interfacing with computers. As time has progressed towards the present, however, many devices are beginning to make use of multiple different input types, and will likely continue to do so. With this happening, users need to be able to interact with single applications through a variety of ways without having to change the design or suffer a loss of functionality. This is important because having only one user interface, UI, across all input types is makes it easier for the user to learn and keeps all interactions consistent across the application. Some of the main input types in use today are touch screens, mice, microphones, and keyboards; all seen in Figure 1 below. Current design methods tend to focus on how well the users are able to learn and use a computing system. It is good to focus on those aspects, but it is important to address the issues that come along with using different input types, or in this case, multiple input types. UI design for touch screens, mice, microphones, and keyboards each requires satisfying a different set of needs. Due to this trend in single devices being used in many different input configurations, a "fully functional" UI design will need to address the needs of multiple input configurations. In this work, clashing concerns are described for the primary input sources for computers and suggests methodologies and techniques for designing a single UI that is reasonable for all of the input configurations.
ContributorsJohnson, David Bradley (Author) / Calliss, Debra (Thesis director) / Wilkerson, Kelly (Committee member) / Walker, Erin (Committee member) / Barrett, The Honors College (Contributor) / Computer Science and Engineering Program (Contributor)
Created2013-05
132878-Thumbnail Image.png
Description
This thesis is a proposition for an addition to an engineering project that involves creating a heads up display for a scuba diving mask which displays important safety information. The premise of this thesis includes three different features: distress, distance, and direction. The distress feature is to alert a diver

This thesis is a proposition for an addition to an engineering project that involves creating a heads up display for a scuba diving mask which displays important safety information. The premise of this thesis includes three different features: distress, distance, and direction. The distress feature is to alert a diver that their “buddy diver” is having an emergency and is requiring attention. Distance and direction are intended to be included on the heads up display, informing the diver of the relative location of their “buddy diver” in case they have lost sight of them. A set of requirements was created to find the most practical solutions. From these requirements and extensive research, three potential methods of underwater communication were found; electromagnetic waves in the radio frequency range, optical waves, and acoustic waves. Of these three methods, acoustic waves were found to be most feasible for the scope of this project. Using modems and transducers, an acoustic signal is able to be sent from one diver to another in order to detect relative location as well as send a message of distress. Ultimately, two possible concepts were designed, with one deemed as most advantageous. This concept engages the use of four transponders that have the ability to transmit and receive high frequencies, minimizes blind spots, and is small enough to not cause discomfort or be obstructive to the divers experience. Due to the nature of this application, the team is able to propose a path of development for a compact communication system between scuba divers.
ContributorsNossaman, Grace (Co-author) / Hocken, Chase (Co-author) / Padilla, Bryan (Co-author) / Richmond, Christ D. (Thesis director) / Baumann, Alicia (Committee member) / Electrical Engineering Program (Contributor) / Barrett, The Honors College (Contributor)
Created2019-05
132879-Thumbnail Image.png
Description
This thesis is a proposition for an addition to an engineering project that involves creating a heads up display for a scuba diving mask which displays important safety information. The premise of this thesis includes three different features: distress, distance, and direction. The distress feature is to alert a diver

This thesis is a proposition for an addition to an engineering project that involves creating a heads up display for a scuba diving mask which displays important safety information. The premise of this thesis includes three different features: distress, distance, and direction. The distress feature is to alert a diver that their “buddy diver” is having an emergency and is requiring attention. Distance and direction are intended to be included on the heads up display, informing the diver of the relative location of their “buddy diver” in case they have lost sight of them. A set of requirements was created to find the most practical solutions. From these requirements and extensive research, three different methods of underwater communication were found, but only one, acoustics, was feasible for the scope of this project. Using modems and transducers, an acoustic signal is able to be sent from one diver to another in order to detect relative location as well as send a message of distress. Ultimately, two possible concepts were designed, with one deemed as most advantageous. This concept engages the use of four transponders that have the ability to transmit and receive high frequencies, minimizes blind spots, and is small enough to not cause discomfort or be obstructive to the divers experience.
ContributorsHocken, Chase (Co-author) / Nossaman, Grace (Co-author) / Padilla, Bryan (Co-author) / Richmond, Christ D (Thesis director) / Baumann, Alicia (Committee member) / Electrical Engineering Program (Contributor) / Dean, W.P. Carey School of Business (Contributor) / Barrett, The Honors College (Contributor)
Created2019-05
132880-Thumbnail Image.png
Description
This thesis is a proposition for an addition to an engineering project that involves creating a heads up display for a scuba diving mask which displays important safety information. The premise of this thesis includes three different features: distress, distance, and direction. The distress feature is to alert a diver

This thesis is a proposition for an addition to an engineering project that involves creating a heads up display for a scuba diving mask which displays important safety information. The premise of this thesis includes three different features: distress, distance, and direction. The distress feature is to alert a diver that their “buddy diver” is having an emergency and is requiring attention. Distance and direction are intended to be included on the heads up display, informing the diver of the relative location of their “buddy diver” in case they have lost sight of them. A set of requirements was created to find the most practical solutions. From these requirements and extensive research, three potential methods of underwater communication were found; electromagnetic waves in the radio frequency range, optical waves, and acoustic waves. Of these three methods, acoustic waves were found to be most feasible for the scope of this project. Using modems and transducers, an acoustic signal is able to be sent from one diver to another in order to detect relative location as well as send a message of distress. Ultimately, two possible concepts were designed, with one deemed as most advantageous. This concept engages the use of four transponders that have the ability to transmit and receive high frequencies, minimizes blind spots, and is small enough to not cause discomfort or be obstructive to the divers experience. Due to the nature of this application, the team is able to propose a path of development for a compact communication system between scuba divers.
ContributorsPadilla, Bryan (Co-author) / Nossaman, Grace (Co-author) / Hocken, Chase (Co-author) / Richmond, Christ D. (Thesis director) / Baumann, Alicia (Committee member) / Electrical Engineering Program (Contributor) / Barrett, The Honors College (Contributor)
Created2019-05