Matching Items (3)
Filtering by

Clear all filters

135445-Thumbnail Image.png
Description
While former New York Yankees pitcher Goose Gossage unleashed his tirade on the deterioration of the unwritten rules of baseball and nerds ruining the sport about halfway through my writing of the paper, sentiments like his were inspiration for my topic: the evolution of statistics and data in baseball. By

While former New York Yankees pitcher Goose Gossage unleashed his tirade on the deterioration of the unwritten rules of baseball and nerds ruining the sport about halfway through my writing of the paper, sentiments like his were inspiration for my topic: the evolution of statistics and data in baseball. By telling the story of how baseball data and statistics have evolved, my goal was to also demonstrate how they have been intertwined since the beginning—which would essentially mean that nerds have always been ruining the sport (if you subscribe to that kind of thought).

In the quest to showcase this, it was necessary to document how baseball prospers from numbers and numbers prosper from baseball. The relationship between the two is mutualistic. Furthermore, an all-encompassing historical look at how data and statistics in baseball have matured was a critical portion of the paper. With a metric such as batting average going from a radical new measure that posed a threat to the status quo, to a fiercely cherished statistic that was suddenly being unseated by advanced analytics, it shows the creation of new and destruction of old has been incessant. Innovators like Pete Palmer, Dick Cramer and Bill James played a large role in this process in the 1980s. Computers aided their effort and when paired with the Internet, unleashed the ability to crunch data to an even larger sector of the population. The unveiling of Statcast at the commencement of the 2015 season showed just how much potential there is for measuring previously unquantifiable baseball acts.

Essentially, there will always be people who mourn the presence of data and statistics in baseball. Despite this, the evolution story indicates baseball and numbers will be intertwined into the future, likely to an even greater extent than ever before, as technology and new philosophies become increasingly integrated into front offices and clubhouses.
ContributorsGarcia, Jacob Michael (Author) / Kurland, Brett (Thesis director) / Doig, Stephen (Committee member) / Jackson, Victoria (Committee member) / Walter Cronkite School of Journalism and Mass Communication (Contributor) / Barrett, The Honors College (Contributor)
Created2016-05
134603-Thumbnail Image.png
Description
Beginning with the publication of Moneyball by Michael Lewis in 2003, the use of sabermetrics \u2014 the application of statistical analysis to baseball records - has exploded in major league front offices. Executives Billy Beane, Paul DePoedesta, and Theo Epstein are notable figures that have been successful in incorporating sabermetrics

Beginning with the publication of Moneyball by Michael Lewis in 2003, the use of sabermetrics \u2014 the application of statistical analysis to baseball records - has exploded in major league front offices. Executives Billy Beane, Paul DePoedesta, and Theo Epstein are notable figures that have been successful in incorporating sabermetrics to their team's philosophy, resulting in playoff appearances and championship success. The competitive market of baseball, once dominated by the collusion of owners, now promotes innovative thought to analytically develop competitive advantages. The tiered economic payrolls of Major League Baseball (MLB) has created an environment in which large-market teams are capable of "buying" championships through the acquisition of the best available talent in free agency, and small-market teams are pushed to "build" championships through the drafting and systematic farming of high-school and college level players. The use of sabermetrics promotes both models of success \u2014 buying and building \u2014 by unbiasedly determining a player's productivity. The objective of this paper is to develop a regression-based predictive model that can be used by Majors League Baseball teams to forecast the MLB career average offensive performance of college baseball players from specific conferences. The development of this model required multiple tasks: I. Data was obtained from The Baseball Cube, a baseball records database providing both College and MLB data. II. Modifications to the data were applied to adjust for year-to-year formatting, a missing variable for seasons played, the presence of missing values, and to correct league identifiers. III. Evaluation of multiple offensive productivity models capable of handling the obtained dataset and regression forecasting technique. IV. SAS software was used to create the regression models and analyze the residuals for any irregularities or normality violations. The results of this paper find that there is a relationship between Division 1 collegiate baseball conferences and average career offensive productivity in Major Leagues Baseball, with the SEC having the most accurate reflection of performance.
ContributorsBadger, Mathew Bernard (Author) / Goegan, Brian (Thesis director) / Eaton, John (Committee member) / Department of Economics (Contributor) / Department of Marketing (Contributor) / Barrett, The Honors College (Contributor)
Created2017-05
132524-Thumbnail Image.png
Description
This project looks at the change in strikeout patterns over the past 19 years of Major League Baseball. New research in 2001 revolutionized the pitching statistics field, and non-coincidentally, the number of strikeouts has ballooned since then. I first detail the statistical nature of the increase, looking at where the

This project looks at the change in strikeout patterns over the past 19 years of Major League Baseball. New research in 2001 revolutionized the pitching statistics field, and non-coincidentally, the number of strikeouts has ballooned since then. I first detail the statistical nature of the increase, looking at where the additional strikeouts are coming from. Then, a discussion of why this has happened, referencing changes in baseball strategy and talent usage optimization follows. The changes in the ways MLB teams use their pitching staffs are largely the cause of this increase. Similar research is cited to confirm that these strategy changes are valid and are having the effect of increasing strikeouts in the game. Strikeout numbers are then compared to other pitching statistics over the years to determine whether the increase has had any effect on other pitching metrics. Lastly, overall team success is looked at as a verification method as to whether the increased focus on increasing strikeouts has created positive results for major league teams. Teams making the MLB playoffs consistently ranked much higher than non-qualifying teams in terms of strikeout rates. Also included in the project are the details of data acquisition and manipulation, to ensure the figures used are valid. Ideas for future research and further work on the topic are included, as the amount of data available in this field is quite staggering. Further analysis could dive into the ways pitches themselves are changing, rather than looking at pitching outcomes. Overall, the project details and explains a major shift in the way baseball has been played over the last 19 years, complete with both pure data analysis and supplementary commentary and explanation
ContributorsCasalena, Jontito (Author) / Doig, Stephen (Thesis director) / Pomrenke, Jacob (Committee member) / Department of Information Systems (Contributor) / School of Mathematical and Statistical Sciences (Contributor) / Barrett, The Honors College (Contributor)
Created2019-05