Matching Items (7)
Filtering by

Clear all filters

156974-Thumbnail Image.png
Description
As the demand for wireless systems increases exponentially, it has become necessary

for different wireless modalities, like radar and communication systems, to share the

available bandwidth. One approach to realize coexistence successfully is for each

system to adopt a transmit waveform with a unique nonlinear time-varying phase

function. At the receiver of the system

As the demand for wireless systems increases exponentially, it has become necessary

for different wireless modalities, like radar and communication systems, to share the

available bandwidth. One approach to realize coexistence successfully is for each

system to adopt a transmit waveform with a unique nonlinear time-varying phase

function. At the receiver of the system of interest, the waveform received for process-

ing may still suffer from low signal-to-interference-plus-noise ratio (SINR) due to the

presence of the waveforms that are matched to the other coexisting systems. This

thesis uses a time-frequency based approach to increase the SINR of a system by estimating the unique nonlinear instantaneous frequency (IF) of the waveform matched

to the system. Specifically, the IF is estimated using the synchrosqueezing transform,

a highly localized time-frequency representation that also enables reconstruction of

individual waveform components. As the IF estimate is biased, modified versions of

the transform are investigated to obtain estimators that are both unbiased and also

matched to the unique nonlinear phase function of a given waveform. Simulations

using transmit waveforms of coexisting wireless systems are provided to demonstrate

the performance of the proposed approach using both biased and unbiased IF estimators.
ContributorsGattani, Vineet Sunil (Author) / Papandreou-Suppappola, Antonia (Thesis advisor) / Richmond, Christ (Committee member) / Maurer, Alexander (Committee member) / Arizona State University (Publisher)
Created2018
137081-Thumbnail Image.png
Description
Passive radar can be used to reduce the demand for radio frequency spectrum bandwidth. This paper will explain how a MATLAB simulation tool was developed to analyze the feasibility of using passive radar with digitally modulated communication signals. The first stage of the simulation creates a binary phase-shift keying (BPSK)

Passive radar can be used to reduce the demand for radio frequency spectrum bandwidth. This paper will explain how a MATLAB simulation tool was developed to analyze the feasibility of using passive radar with digitally modulated communication signals. The first stage of the simulation creates a binary phase-shift keying (BPSK) signal, quadrature phase-shift keying (QPSK) signal, or digital terrestrial television (DTTV) signal. A scenario is then created using user defined parameters that simulates reception of the original signal on two different channels, a reference channel and a surveillance channel. The signal on the surveillance channel is delayed and Doppler shifted according to a point target scattering profile. An ambiguity function detector is implemented to identify the time delays and Doppler shifts associated with reflections off of the targets created. The results of an example are included in this report to demonstrate the simulation capabilities.
ContributorsScarborough, Gillian Donnelly (Author) / Cochran, Douglas (Thesis director) / Berisha, Visar (Committee member) / Wang, Chao (Committee member) / Barrett, The Honors College (Contributor) / Electrical Engineering Program (Contributor) / School of Mathematical and Statistical Sciences (Contributor)
Created2014-05
153726-Thumbnail Image.png
Description
As the demand for spectrum sharing between radar and communications systems is steadily increasing, the coexistence between the two systems is a growing and very challenging problem. Radar tracking in the presence of strong communications interference can result in low probability of detection even when sequential Monte Carlo

tracking methods

As the demand for spectrum sharing between radar and communications systems is steadily increasing, the coexistence between the two systems is a growing and very challenging problem. Radar tracking in the presence of strong communications interference can result in low probability of detection even when sequential Monte Carlo

tracking methods such as the particle filter (PF) are used that better match the target kinematic model. In particular, the tracking performance can fluctuate as the power level of the communications interference can vary dynamically and unpredictably.

This work proposes to integrate the interacting multiple model (IMM) selection approach with the PF tracker to allow for dynamic variations in the power spectral density of the communications interference. The model switching allows for a necessary transition between different communications interference power spectral density (CI-PSD) values in order to reduce prediction errors. Simulations demonstrate the high performance of the integrated approach with as many as six dynamic CI-PSD value changes during the target track. For low signal-to-interference-plus-noise ratios, the derivation for estimating the high power levels of the communications interference is provided; the estimated power levels would be dynamically used in the IMM when integrated with a track-before-detect filter that is better matched to low SINR tracking applications.
ContributorsZhou, Jian (Author) / Papandreou-Suppappola, Antonia (Thesis advisor) / Kovvali, Narayan (Committee member) / Berisha, Visar (Committee member) / Arizona State University (Publisher)
Created2015
154672-Thumbnail Image.png
Description
In recent years, there has been an increased interest in sharing available bandwidth to avoid spectrum congestion. With an ever-increasing number wireless users, it is critical to develop signal processing based spectrum sharing algorithms to achieve cooperative use of the allocated spectrum among multiple systems in order to reduce

In recent years, there has been an increased interest in sharing available bandwidth to avoid spectrum congestion. With an ever-increasing number wireless users, it is critical to develop signal processing based spectrum sharing algorithms to achieve cooperative use of the allocated spectrum among multiple systems in order to reduce interference between systems. This work studies the radar and communications systems coexistence problem using two main approaches. The first approach develops methodologies to increase radar target tracking performance under low signal-to-interference-plus-noise ratio (SINR) conditions due to the coexistence of strong communications interference. The second approach jointly optimizes the performance of both systems by co-designing a common transmit waveform.

When concentrating on improving radar tracking performance, a pulsed radar that is tracking a single target coexisting with high powered communications interference is considered. Although the Cramer-Rao lower bound (CRLB) on the covariance of an unbiased estimator of deterministic parameters provides a bound on the estimation mean squared error (MSE), there exists an SINR threshold at which estimator covariance rapidly deviates from the CRLB. After demonstrating that different radar waveforms experience different estimation SINR thresholds using the Barankin bound (BB), a new radar waveform design method is proposed based on predicting the waveform-dependent BB SINR threshold under low SINR operating conditions.

A novel method of predicting the SINR threshold value for maximum likelihood estimation (MLE) is proposed. A relationship is shown to exist between the formulation of the BB kernel and the probability of selecting sidelobes for the MLE. This relationship is demonstrated as an accurate means of threshold prediction for the radar target parameter estimation of frequency, time-delay and angle-of-arrival.



For the co-design radar and communications system problem, the use of a common transmit waveform for a pulse-Doppler radar and a multiuser communications system is proposed. The signaling scheme for each system is selected from a class of waveforms with nonlinear phase function by optimizing the waveform parameters to minimize interference between the two systems and interference among communications users. Using multi-objective optimization, a trade-off in system performance is demonstrated when selecting waveforms that minimize both system interference and tracking MSE.
ContributorsKota, John S (Author) / Papandreou-Suppappola, Antonia (Thesis advisor) / Berisha, Visar (Committee member) / Bliss, Daniel (Committee member) / Kovvali, Narayan (Committee member) / Arizona State University (Publisher)
Created2016
155255-Thumbnail Image.png
Description
RF convergence of radar and communications users is rapidly becoming an issue for a multitude of stakeholders. To hedge against growing spectral congestion, research into cooperative radar and communications systems has been identified as a critical necessity for the United States and other countries. Further, the joint sensing-communicating paradigm appears

RF convergence of radar and communications users is rapidly becoming an issue for a multitude of stakeholders. To hedge against growing spectral congestion, research into cooperative radar and communications systems has been identified as a critical necessity for the United States and other countries. Further, the joint sensing-communicating paradigm appears imminent in several technological domains. In the pursuit of co-designing radar and communications systems that work cooperatively and benefit from each other's existence, joint radar-communications metrics are defined and bounded as a measure of performance. Estimation rate is introduced, a novel measure of radar estimation information as a function of time. Complementary to communications data rate, the two systems can now be compared on the same scale. An information-centric approach has a number of advantages, defining precisely what is gained through radar illumination and serves as a measure of spectral efficiency. Bounding radar estimation rate and communications data rate jointly, systems can be designed as a joint optimization problem.
ContributorsPaul, Bryan (Author) / Bliss, Daniel W. (Thesis advisor) / Berisha, Visar (Committee member) / Kosut, Oliver (Committee member) / Tepedelenlioğlu, Cihan (Committee member) / Arizona State University (Publisher)
Created2017
157701-Thumbnail Image.png
Description
Eigenvalues of the Gram matrix formed from received data frequently appear in sufficient detection statistics for multi-channel detection with Generalized Likelihood Ratio (GLRT) and Bayesian tests. In a frequently presented model for passive radar, in which the null hypothesis is that the channels are independent and contain only complex white

Eigenvalues of the Gram matrix formed from received data frequently appear in sufficient detection statistics for multi-channel detection with Generalized Likelihood Ratio (GLRT) and Bayesian tests. In a frequently presented model for passive radar, in which the null hypothesis is that the channels are independent and contain only complex white Gaussian noise and the alternative hypothesis is that the channels contain a common rank-one signal in the mean, the GLRT statistic is the largest eigenvalue $\lambda_1$ of the Gram matrix formed from data. This Gram matrix has a Wishart distribution. Although exact expressions for the distribution of $\lambda_1$ are known under both hypotheses, numerically calculating values of these distribution functions presents difficulties in cases where the dimension of the data vectors is large. This dissertation presents tractable methods for computing the distribution of $\lambda_1$ under both the null and alternative hypotheses through a technique of expanding known expressions for the distribution of $\lambda_1$ as inner products of orthogonal polynomials. These newly presented expressions for the distribution allow for computation of detection thresholds and receiver operating characteristic curves to arbitrary precision in floating point arithmetic. This represents a significant advancement over the state of the art in a problem that could previously only be addressed by Monte Carlo methods.
ContributorsJones, Scott, Ph.D (Author) / Cochran, Douglas (Thesis advisor) / Berisha, Visar (Committee member) / Bliss, Daniel (Committee member) / Kosut, Oliver (Committee member) / Richmond, Christ (Committee member) / Arizona State University (Publisher)
Created2019
157757-Thumbnail Image.png
Description
In this paper, the Software Defined Radio (SDR) platform is considered for building a pseudo-monostatic, 100MHz Pulse-Doppler radar. The SDR platform has many benefits for experimental communications systems as it offers relatively cheap, parametrically dynamic, off-the-shelf access to the Radiofrequency (RF) spectrum. For this application, the Universal Software Radio Peripheral

In this paper, the Software Defined Radio (SDR) platform is considered for building a pseudo-monostatic, 100MHz Pulse-Doppler radar. The SDR platform has many benefits for experimental communications systems as it offers relatively cheap, parametrically dynamic, off-the-shelf access to the Radiofrequency (RF) spectrum. For this application, the Universal Software Radio Peripheral (USRP) X310 hardware package is utilized with GNURadio for interfacing to the device and Matlab for signal post- processing. Pulse doppler radar processing is used to ascertain the range and velocity of a target considered in simulation and in real, over-the-air (OTA) experiments. The USRP platform offers a scalable and dynamic hardware package that can, with relatively low overhead, be incorporated into other experimental systems. This radar system will be considered for implementation into existing over-the-air Joint Radar- Communications (JRC) spectrum sharing experiments. The JRC system considers a co-designed architecture in which a communications user and a radar user share the same spectral allocation. Where the two systems would traditionally consider one another a source of interference, the receiver is able to decode communications information and discern target information via pulse-doppler radar simultaneously.
ContributorsGubash, Gerard (Author) / Bliss, Daniel W (Thesis advisor) / Richmond, Christ (Committee member) / Chakrabarti, Chaitali (Committee member) / Arizona State University (Publisher)
Created2019