Matching Items (7)
Filtering by

Clear all filters

132482-Thumbnail Image.png
DescriptionAcoustic Ecology is an undervalued field of study of the relationship between the environment and sound. This project aims to educate people on this topic and show people the importance by immersing them in virtual reality scenes. The scenes were created using VR180 content as well as 360° spatial audio.
ContributorsNeel, Jordan Tanner (Author) / LiKamWa, Robert (Thesis director) / Feisst, Sabine (Committee member) / Arts, Media and Engineering Sch T (Contributor) / Department of Psychology (Contributor) / Barrett, The Honors College (Contributor)
Created2019-05
137059-Thumbnail Image.png
Description
Fifty years ago, we embarked on a journey for the first time in all of history \u2014 an exploration of the final frontier: outer space. Now, having been to the moon and back, we are still exploring the unknown. In the 21st century, we have pioneered genetic cloning and made

Fifty years ago, we embarked on a journey for the first time in all of history \u2014 an exploration of the final frontier: outer space. Now, having been to the moon and back, we are still exploring the unknown. In the 21st century, we have pioneered genetic cloning and made other unprecedented biotechnological advances. Similarly, artists have ventured into their own frontier, branching out of their own narrowly defined areas and breaking down barriers \u2014 barriers between art and science, between the concert hall and the outdoors, between manmade instruments and the sounds of nature. At first glance, it seems that music and science have little in common. But upon closer inspection, one will discover that there are similarities and intersections between these two fields that deserve attention. Interest in the correlation between music and science can be traced back at least as far as Ancient Greece; since Pythagoras, mathematicians, physicists, acousticians and many others have addressed connections between the two fields in manifold ways. It is becoming increasingly obvious that art and science are not at the opposite ends of the spectrum, where conventional wisdom has traditionally located them, but at the opposite sides of the same coin. In my thesis, I seek to explore the connections between music and the sciences by examining the field of acoustic ecology. I will first provide an overview of music as an interdisciplinary field. Then I will undertake two case studies of musicians whose endeavors have been significant to the field of acoustic ecology, and consider the benefits that can be drawn from their work. These artists are David Dunn and Andrea Polli. I will draw on their philosophy, writings and art as well as on secondary literature. I will take a philosophical approach to the intersections between the two areas and identify heretofore little explored aspects of the interdisciplinary potential of these two fields.
ContributorsChou, Cecilia (Author) / Feisst, Sabine (Thesis director) / Hackbarth, Glenn (Committee member) / Barrett, The Honors College (Contributor) / School of Historical, Philosophical and Religious Studies (Contributor) / School of Human Evolution and Social Change (Contributor) / School of Music (Contributor)
Created2014-05
136952-Thumbnail Image.png
Description
Motor behavior is prone to variable conditions and deviates further in disorders affecting the nervous system. A combination of environmental and neural factors impacts the amount of uncertainty. Although the influence of these factors on estimating endpoint positions have been examined, the role of limb configuration on endpoint variability has

Motor behavior is prone to variable conditions and deviates further in disorders affecting the nervous system. A combination of environmental and neural factors impacts the amount of uncertainty. Although the influence of these factors on estimating endpoint positions have been examined, the role of limb configuration on endpoint variability has been mostly ignored. Characterizing the influence of arm configuration (i.e. intrinsic factors) would allow greater comprehension of sensorimotor integration and assist in interpreting exaggerated movement variability in patients. In this study, subjects were placed in a 3-D virtual reality environment and were asked to move from a starting position to one of three targets in the frontal plane with and without visual feedback of the moving limb. The alternating of visual feedback during trials increased uncertainty between the planning and execution phases. The starting limb configurations, adducted and abducted, were varied in separate blocks. Arm configurations were setup by rotating along the shoulder-hand axis to maintain endpoint position. The investigation hypothesized: 1) patterns of endpoint variability of movements would be dependent upon the starting arm configuration and 2) any differences observed would be more apparent in conditions that withheld visual feedback. The results indicated that there were differences in endpoint variability between arm configurations in both visual conditions, but differences in variability increased when visual feedback was withheld. Overall this suggests that in the presence of visual feedback, planning of movements in 3D space mostly uses coordinates that are arm configuration independent. On the other hand, without visual feedback, planning of movements in 3D space relies substantially on intrinsic coordinates.
ContributorsRahman, Qasim (Author) / Buneo, Christopher (Thesis director) / Helms Tillery, Stephen (Committee member) / Barrett, The Honors College (Contributor) / Harrington Bioengineering Program (Contributor)
Created2014-05
Description
Biofeedback music is the integration of physiological signals with audible sound for aesthetic considerations, which an individual’s mental status corresponds to musical output. This project looks into how sounds can be drawn from the meditative and attentive states of the brain using the MindWave Mobile EEG biosensor from NeuroSky. With

Biofeedback music is the integration of physiological signals with audible sound for aesthetic considerations, which an individual’s mental status corresponds to musical output. This project looks into how sounds can be drawn from the meditative and attentive states of the brain using the MindWave Mobile EEG biosensor from NeuroSky. With the MindWave and an Arduino microcontroller processor, sonic output is attained by inputting the data collected by the MindWave, and in real time, outputting code that deciphers it into user constructed sound output. The input is scaled from values 0 to 100, measuring the ‘attentive’ state of the mind by observing alpha waves, and distributing this information to the microcontroller. The output of sound comes from sourcing this into the Musical Instrument Shield and varying the musical tonality with different chords and delay of the notes. The manipulation of alpha states highlights the control or lack thereof for the performer and touches on the question of how much control over the output there really is, much like the experimentalist Alvin Lucier displayed with his concepts in brainwave music.
ContributorsQuach, Andrew Duc (Author) / Helms Tillery, Stephen (Thesis director) / Feisst, Sabine (Committee member) / Barrett, The Honors College (Contributor) / Herberger Institute for Design and the Arts (Contributor) / Harrington Bioengineering Program (Contributor)
Created2014-05
136933-Thumbnail Image.png
Description
Motor behavior is prone to variable conditions and deviates further in disorders affecting the nervous system. A combination of environmental and neural factors impacts the amount of uncertainty. Although the influence of these factors on estimating endpoint positions have been examined, the role of limb configuration on endpoint variability has

Motor behavior is prone to variable conditions and deviates further in disorders affecting the nervous system. A combination of environmental and neural factors impacts the amount of uncertainty. Although the influence of these factors on estimating endpoint positions have been examined, the role of limb configuration on endpoint variability has been mostly ignored. Characterizing the influence of arm configuration (i.e. intrinsic factors) would allow greater comprehension of sensorimotor integration and assist in interpreting exaggerated movement variability in patients. In this study, subjects were placed in a 3-D virtual reality environment and were asked to move from a starting position to one of three targets in the frontal plane with and without visual feedback of the moving limb. The alternating of visual feedback during trials increased uncertainty between the planning and execution phases. The starting limb configurations, adducted and abducted, were varied in separate blocks. Arm configurations were setup by rotating along the shoulder-hand axis to maintain endpoint position. The investigation hypothesized: 1) patterns of endpoint variability of movements would be dependent upon the starting arm configuration and 2) any differences observed would be more apparent in conditions that withheld visual feedback. The results indicated that there were differences in endpoint variability between arm configurations in both visual conditions, but differences in variability increased when visual feedback was withheld. Overall this suggests that in the presence of visual feedback, planning of movements in 3D space mostly uses coordinates that are arm configuration independent. On the other hand, without visual feedback, planning of movements in 3D space relies substantially on intrinsic coordinates.
ContributorsRahman, Qasim (Author) / Buneo, Christopher (Thesis director) / Helms Tillery, Stephen (Committee member) / Barrett, The Honors College (Contributor) / Harrington Bioengineering Program (Contributor)
Created2014-05
135023-Thumbnail Image.png
Description
Recent work in free-recall tasks suggest that human memory foraging may follow a Lévy flight distribution – a random walk procedure that is common in other activities of cognitive agents, such as animal and human food foraging. This study attempts to draw parallels between memory search and physical search, with

Recent work in free-recall tasks suggest that human memory foraging may follow a Lévy flight distribution – a random walk procedure that is common in other activities of cognitive agents, such as animal and human food foraging. This study attempts to draw parallels between memory search and physical search, with the assumption that humans follow similar search patterns in both. To date, research merely equates the two processes (foraging in memory and the physical world) based on a similarity in statistical structure. This study starts with demonstrating a relationship between physical distance traveled and IRIs by having participants list countries. An IRI, inter-retrieval interval, is the time interval between items recalled. The next experiment uses multidimensional scaling (MDS) to derive a Euclidean perceptual space from similarity ratings of freely-recalled items and then maps the trajectory of human thought through this perceptual space. This trajectory can offer a much more compelling comparison to physical foraging behavior. Finally, a possible correlate of Lévy flight foraging is explored called critical slowing down. Statistically significant evidence was found in all three experiments. The discussion connects all three experiments and what their results mean for human memory foraging.
ContributorsGreer, Katharine Marie (Author) / Amazeen, Eric L. (Thesis director) / Glenberg, Arthur (Committee member) / Amazeen, Polemnia (Committee member) / Department of Psychology (Contributor) / School of Criminology and Criminal Justice (Contributor) / Barrett, The Honors College (Contributor)
Created2016-12
132742-Thumbnail Image.png
Description
By 2030, the number of people above the age of 65 is projected to outnumber those under the age of 18 for the first time in United States history. With a growing older population, it is predicted that the amount of people moving into nursing homes and care facilities will

By 2030, the number of people above the age of 65 is projected to outnumber those under the age of 18 for the first time in United States history. With a growing older population, it is predicted that the amount of people moving into nursing homes and care facilities will also increase. However, a pressing problem is the high prevalence of depression and anxiety among elderly people residing in institutionalized living arrangements. With drugs and antidepressants less effective at treating patients with both dementia and depression, there is a need for more non-pharmacological interventions geared toward improving older adults’ mental well-being. In response, the potential therapeutic effect of exploring virtual nature through EcoRift—which provides dynamic and realistic 360-degree audio and visual environments—on older adults’ mental well-being was examined in this study. Ten individuals (3 men and 7 women) aged 50 and above were recruited and each participant experienced the virtual nature sojourns for 15 minutes once a week, for a total of three weeks. Pre- and post- virtual reality (VR) survey questionnaires were implemented to gauge the participants’ emotional response, including overall well-being and level of relaxation. Physiological measures such as heart rate and blood pressure were also taken before and after the VR experience. Findings show that immersion in nature through virtual reality improves older adults’ mental well-being by eliciting a transient sense of relaxation, peacefulness, and happiness. Further studies need to be performed in order to validate EcoRift’s effect on physiology; however, preliminary data suggests that immersive virtual nature also acts to decrease blood pressure. Overall, EcoRift shows to be a promising tool for bridging access to remote natural environments and may be a mentally beneficial activity for patients isolated in hospitals, hospices, and nursing homes.
ContributorsChien, Naomi Wei-Chia (Author) / Feisst, Sabine (Thesis director) / Cordes, Colleen (Committee member) / School of Life Sciences (Contributor) / Barrett, The Honors College (Contributor)
Created2019-05