Matching Items (11)
Filtering by

Clear all filters

151926-Thumbnail Image.png
Description
In recent years, machine learning and data mining technologies have received growing attention in several areas such as recommendation systems, natural language processing, speech and handwriting recognition, image processing and biomedical domain. Many of these applications which deal with physiological and biomedical data require person specific or person adaptive systems.

In recent years, machine learning and data mining technologies have received growing attention in several areas such as recommendation systems, natural language processing, speech and handwriting recognition, image processing and biomedical domain. Many of these applications which deal with physiological and biomedical data require person specific or person adaptive systems. The greatest challenge in developing such systems is the subject-dependent data variations or subject-based variability in physiological and biomedical data, which leads to difference in data distributions making the task of modeling these data, using traditional machine learning algorithms, complex and challenging. As a result, despite the wide application of machine learning, efficient deployment of its principles to model real-world data is still a challenge. This dissertation addresses the problem of subject based variability in physiological and biomedical data and proposes person adaptive prediction models based on novel transfer and active learning algorithms, an emerging field in machine learning. One of the significant contributions of this dissertation is a person adaptive method, for early detection of muscle fatigue using Surface Electromyogram signals, based on a new multi-source transfer learning algorithm. This dissertation also proposes a subject-independent algorithm for grading the progression of muscle fatigue from 0 to 1 level in a test subject, during isometric or dynamic contractions, at real-time. Besides subject based variability, biomedical image data also varies due to variations in their imaging techniques, leading to distribution differences between the image databases. Hence a classifier learned on one database may perform poorly on the other database. Another significant contribution of this dissertation has been the design and development of an efficient biomedical image data annotation framework, based on a novel combination of transfer learning and a new batch-mode active learning method, capable of addressing the distribution differences across databases. The methodologies developed in this dissertation are relevant and applicable to a large set of computing problems where there is a high variation of data between subjects or sources, such as face detection, pose detection and speech recognition. From a broader perspective, these frameworks can be viewed as a first step towards design of automated adaptive systems for real world data.
ContributorsChattopadhyay, Rita (Author) / Panchanathan, Sethuraman (Thesis advisor) / Ye, Jieping (Thesis advisor) / Li, Baoxin (Committee member) / Santello, Marco (Committee member) / Arizona State University (Publisher)
Created2013
151787-Thumbnail Image.png
Description
Electromyogram (EMG)-based control interfaces are increasingly used in robot teleoperation, prosthetic devices control and also in controlling robotic exoskeletons. Over the last two decades researchers have come up with a plethora of decoding functions to map myoelectric signals to robot motions. However, this requires a lot of training and validation

Electromyogram (EMG)-based control interfaces are increasingly used in robot teleoperation, prosthetic devices control and also in controlling robotic exoskeletons. Over the last two decades researchers have come up with a plethora of decoding functions to map myoelectric signals to robot motions. However, this requires a lot of training and validation data sets, while the parameters of the decoding function are specific for each subject. In this thesis we propose a new methodology that doesn't require training and is not user-specific. The main idea is to supplement the decoding functional error with the human ability to learn inverse model of an arbitrary mapping function. We have shown that the subjects gradually learned the control strategy and their learning rates improved. We also worked on identifying an optimized control scheme that would be even more effective and easy to learn for the subjects. Optimization was done by taking into account that muscles act in synergies while performing a motion task. The low-dimensional representation of the neural activity was used to control a two-dimensional task. Results showed that in the case of reduced dimensionality mapping, the subjects were able to learn to control the device in a slower pace, however they were able to reach and retain the same level of controllability. To summarize, we were able to build an EMG-based controller for robot devices that would work for any subject, without any training or decoding function, suggesting human-embedded controllers for robotic devices.
ContributorsAntuvan, Chris Wilson (Author) / Artemiadis, Panagiotis (Thesis advisor) / Muthuswamy, Jitendran (Committee member) / Santos, Veronica J (Committee member) / Arizona State University (Publisher)
Created2013
151480-Thumbnail Image.png
Description
The use of electromyography (EMG) signals to characterize muscle fatigue has been widely accepted. Initial work on characterizing muscle fatigue during isometric contractions demonstrated that its frequency decreases while its amplitude increases with the onset of fatigue. More recent work concentrated on developing techniques to characterize dynamic contractions for use

The use of electromyography (EMG) signals to characterize muscle fatigue has been widely accepted. Initial work on characterizing muscle fatigue during isometric contractions demonstrated that its frequency decreases while its amplitude increases with the onset of fatigue. More recent work concentrated on developing techniques to characterize dynamic contractions for use in clinical and training applications. Studies demonstrated that as fatigue progresses, the EMG signal undergoes a shift in frequency, and different physiological mechanisms on the possible cause of the shift were considered. Time-frequency processing, using the Wigner distribution or spectrogram, is one of the techniques used to estimate the instantaneous mean frequency and instantaneous median frequency of the EMG signal using a variety of techniques. However, these time-frequency methods suffer either from cross-term interference when processing signals with multiple components or time-frequency resolution due to the use of windowing. This study proposes the use of the matching pursuit decomposition (MPD) with a Gaussian dictionary to process EMG signals produced during both isometric and dynamic contractions. In particular, the MPD obtains unique time-frequency features that represent the EMG signal time-frequency dependence without suffering from cross-terms or loss in time-frequency resolution. As the MPD does not depend on an analysis window like the spectrogram, it is more robust in applying the timefrequency features to identify the spectral time-variation of the EGM signal.
ContributorsAustin, Hiroko (Author) / Papandreou-Suppappola, Antonia (Thesis advisor) / Kovvali, Narayan (Committee member) / Muthuswamy, Jitendran (Committee member) / Arizona State University (Publisher)
Created2012
153498-Thumbnail Image.png
Description
Myoelectric control is lled with potential to signicantly change human-robot interaction.

Humans desire compliant robots to safely interact in dynamic environments

associated with daily activities. As surface electromyography non-invasively measures

limb motion intent and correlates with joint stiness during co-contractions,

it has been identied as a candidate for naturally controlling such robots. However,

state-of-the-art myoelectric

Myoelectric control is lled with potential to signicantly change human-robot interaction.

Humans desire compliant robots to safely interact in dynamic environments

associated with daily activities. As surface electromyography non-invasively measures

limb motion intent and correlates with joint stiness during co-contractions,

it has been identied as a candidate for naturally controlling such robots. However,

state-of-the-art myoelectric interfaces have struggled to achieve both enhanced

functionality and long-term reliability. As demands in myoelectric interfaces trend

toward simultaneous and proportional control of compliant robots, robust processing

of multi-muscle coordinations, or synergies, plays a larger role in the success of the

control scheme. This dissertation presents a framework enhancing the utility of myoelectric

interfaces by exploiting motor skill learning and

exible muscle synergies for

reliable long-term simultaneous and proportional control of multifunctional compliant

robots. The interface is learned as a new motor skill specic to the controller,

providing long-term performance enhancements without requiring any retraining or

recalibration of the system. Moreover, the framework oers control of both motion

and stiness simultaneously for intuitive and compliant human-robot interaction. The

framework is validated through a series of experiments characterizing motor learning

properties and demonstrating control capabilities not seen previously in the literature.

The results validate the approach as a viable option to remove the trade-o

between functionality and reliability that have hindered state-of-the-art myoelectric

interfaces. Thus, this research contributes to the expansion and enhancement of myoelectric

controlled applications beyond commonly perceived anthropomorphic and

\intuitive control" constraints and into more advanced robotic systems designed for

everyday tasks.
ContributorsIson, Mark (Author) / Artemiadis, Panagiotis (Thesis advisor) / Santello, Marco (Committee member) / Greger, Bradley (Committee member) / Berman, Spring (Committee member) / Sugar, Thomas (Committee member) / Fainekos, Georgios (Committee member) / Arizona State University (Publisher)
Created2015
153384-Thumbnail Image.png
Description
Computational thinking, the creative thought process behind algorithmic design and programming, is a crucial introductory skill for both computer scientists and the population in general. In this thesis I perform an investigation into introductory computer science education in the United States and find that computational thinking is not effectively taught

Computational thinking, the creative thought process behind algorithmic design and programming, is a crucial introductory skill for both computer scientists and the population in general. In this thesis I perform an investigation into introductory computer science education in the United States and find that computational thinking is not effectively taught at either the high school or the college level. To remedy this, I present a new educational system intended to teach computational thinking called Genost. Genost consists of a software tool and a curriculum based on teaching computational thinking through fundamental programming structures and algorithm design. Genost's software design is informed by a review of eight major computer science educational software systems. Genost's curriculum is informed by a review of major literature on computational thinking. In two educational tests of Genost utilizing both college and high school students, Genost was shown to significantly increase computational thinking ability with a large effect size.
ContributorsWalliman, Garret (Author) / Atkinson, Robert (Thesis advisor) / Chen, Yinong (Thesis advisor) / Lee, Yann-Hang (Committee member) / Arizona State University (Publisher)
Created2015
150835-Thumbnail Image.png
Description
All too often, industrial designers face seemingly intractable obstacles as they endeavor to, as Simon (1996, p. 111) describes, devise "courses of action aimed at changing existing situations into preferred ones." These problems, described by Rittel and Webber (1973) as "wicked," are insurmountable due to the contradictory and changing nature

All too often, industrial designers face seemingly intractable obstacles as they endeavor to, as Simon (1996, p. 111) describes, devise "courses of action aimed at changing existing situations into preferred ones." These problems, described by Rittel and Webber (1973) as "wicked," are insurmountable due to the contradictory and changing nature of their requirements. I argue that that industrial design (ID) is largely subject to Rittel's quandary because of its penchant for producing single solutions for large populations; such design solutions are bound, in some senses, to fail due to the contradictory and changing nature of large and, thus, inherently diverse populations. This one-size-fits-all approach is not a necessary attribute of ID, rather, it is a consequence of the time in which it came into being, specifically, the period of industrial mass production. Fortunately, new, agile manufacturing techniques, inexpensive sensors, and machine learning provide an alternative course for ID to take, but it requires a new way of thinking and it requires a new set of methods, which I will elaborate in this thesis. According to Duguay, Landry, and Pasin (1997), we are entering an age where it will be feasible to produce individualized, one-off products from large-scale industrial manufacturing facilities in a way that is not only cost effective, but in many ways as cost effective as the existing techniques of mass production. By availing ourselves of these opportunities, we can tame the problem, not by defeating Rittel's logic, rather by reducing the extent to which his theories are appropriate to the domain of ID. This thesis also describes a test study: an experiment whose design was guided by the proposed design methodologies. The goal of the experiment was to determine the feasibility of a noninvasive system for measuring the health of the forearm muscles. Such a tool would provide the basis for assessing the true impact and possible pathogeny of the manual use of products or modifications to products. Previously, it was considered impossible to use surface electromyography (as opposed to needle or wire based electromyography) to assess muscular activity and muscular health due to the complexity of the arrangement of muscles in the forearm. Attempts to overcome this problem have failed because they have tried to create a single solution for all people. My hypothesis is that, by designing for each individual, a solution may be found. Specifically, I show that, for any given individual, there is a high correlation between the EMG signal and the movements of the fingers that, ostensibly, those muscles control. In other words, by knowing, with great accuracy, the position and the motion of the hand then it would become possible to disambiguate the mixed signals coming from the complex web of muscles in the forearm and enable the assessment of the forearm's health by non-invasive means.
ContributorsBraiman, Stuart (Author) / Giard, Jacques (Thesis advisor) / Black Jr., John A (Committee member) / Herring, Donald (Committee member) / Arizona State University (Publisher)
Created2012
135380-Thumbnail Image.png
Description
Bioscience High School, a small magnet high school located in Downtown Phoenix and a STEAM (Science, Technology, Engineering, Arts, Math) focused school, has been pushing to establish a computer science curriculum for all of their students from freshman to senior year. The school's Mision (Mission and Vision) is to: "..provide

Bioscience High School, a small magnet high school located in Downtown Phoenix and a STEAM (Science, Technology, Engineering, Arts, Math) focused school, has been pushing to establish a computer science curriculum for all of their students from freshman to senior year. The school's Mision (Mission and Vision) is to: "..provide a rigorous, collaborative, and relevant academic program emphasizing an innovative, problem-based curriculum that develops literacy in the sciences, mathematics, and the arts, thus cultivating critical thinkers, creative problem-solvers, and compassionate citizens, who are able to thrive in our increasingly complex and technological communities." Computational thinking is an important part in developing a future problem solver Bioscience High School is looking to produce. Bioscience High School is unique in the fact that every student has a computer available for him or her to use. Therefore, it makes complete sense for the school to add computer science to their curriculum because one of the school's goals is to be able to utilize their resources to their full potential. However, the school's attempt at computer science integration falls short due to the lack of expertise amongst the math and science teachers. The lack of training and support has postponed the development of the program and they are desperately in need of someone with expertise in the field to help reboot the program. As a result, I've decided to create a course that is focused on teaching students the concepts of computational thinking and its application through Scratch and Arduino programming.
ContributorsLiu, Deming (Author) / Meuth, Ryan (Thesis director) / Nakamura, Mutsumi (Committee member) / Computer Science and Engineering Program (Contributor) / Barrett, The Honors College (Contributor)
Created2016-05
137409-Thumbnail Image.png
Description
Electromyography (EMG) and Electroencephalography (EEG) are techniques used to detect electrical activity produced by the human body. EMG detects electrical activity in the skeletal muscles, while EEG detects electrical activity from the scalp. The purpose of this study is to capture different types of EMG and EEG signals and to

Electromyography (EMG) and Electroencephalography (EEG) are techniques used to detect electrical activity produced by the human body. EMG detects electrical activity in the skeletal muscles, while EEG detects electrical activity from the scalp. The purpose of this study is to capture different types of EMG and EEG signals and to determine if the signals can be distinguished between each other and processed into output signals to trigger events in prosthetics. Results from the study suggest that the PSD estimates can be used to compare signals that have significant differences such as the wrist, scalp, and fingers, but it cannot fully distinguish between signals that are closely related, such as two different fingers. The signals that were identified were able to be translated into the physical output simulated on the Arduino circuit.
ContributorsJanis, William Edward (Author) / LaBelle, Jeffrey (Thesis director) / Santello, Marco (Committee member) / Barrett, The Honors College (Contributor) / Computer Science and Engineering Program (Contributor)
Created2013-12
155352-Thumbnail Image.png
Description
Computational thinking, the fundamental way of thinking in computer science, including information sourcing and problem solving behind programming, is considered vital to children who live in a digital era. Most of current educational games designed to teach children about coding either rely on external curricular materials or are too complicated

Computational thinking, the fundamental way of thinking in computer science, including information sourcing and problem solving behind programming, is considered vital to children who live in a digital era. Most of current educational games designed to teach children about coding either rely on external curricular materials or are too complicated to work well with young children. In this thesis project, Guardy, an iOS tower defense game, was developed to help children over 8 years old learn about and practice using basic concepts in programming. The game is built with the SpriteKit, a graphics rendering and animation infrastructure in Apple’s integrated development environment Xcode. It simplifies switching among different game scenes and animating game sprites in the development. In a typical game, a sequence of operations is arranged by players to destroy incoming enemy minions. Basic coding concepts like looping, sequencing, conditionals, and classification are integrated in different levels. In later levels, players are required to type in commands and put them in an order to keep playing the game. To reduce the difficulty of the usability testing, a method combining questionnaires and observation was conducted with two groups of college students who either have no programming experience or are familiar with coding. The results show that Guardy has the potential to help children learn programming and practice computational thinking.
ContributorsWang, Xiaoxiao (Author) / Nelson, Brian C. (Thesis advisor) / Turaga, Pavan (Committee member) / Walker, Erin (Committee member) / Arizona State University (Publisher)
Created2017
164630-Thumbnail Image.png
Description

In nature, some animals have an exoskeleton that provides protection, strength, and stability to the organism, but in engineering, an exoskeleton refers to a device that augments or aids human ability. Since the 1890s, engineers have been designing exoskeletal devices, and conducting research into the possible uses of such devices.

In nature, some animals have an exoskeleton that provides protection, strength, and stability to the organism, but in engineering, an exoskeleton refers to a device that augments or aids human ability. Since the 1890s, engineers have been designing exoskeletal devices, and conducting research into the possible uses of such devices. These bio-inspired mechanisms do not necessarily relate to a robotic device, though since the 1900s, robotic principles have been applied to the design of exoskeletons making their development a subfield in robotic research. There are different multiple types of exoskeletons that target different areas of the human body, and the targeted area depends on the need of the device. Usually, the devices are developed for medical or military usage; for this project, the focus is on medical development of an automated elbow joint to assist in rehabilitation. This project is being developed for therapeutic purposes in conjunction between Arizona State University and Mayo Clinic. Because of the nature of this project, I am responsible for the development of a lightweight brace that could be applied to the elbow joint that was designed by Dr. Kevin Hollander. In this project, my research centered on the use of the Wilmer orthosis brace design, and its possible application to the exoskeleton elbow being developed for Mayo Clinic. This brace is a lightweight solution that provides extra comfort to the user.

ContributorsCarlton, Bryan (Author) / Sugar, Thomas (Thesis director) / Aukes, Daniel (Committee member) / Barrett, The Honors College (Contributor) / Engineering Programs (Contributor)
Created2022-05