Matching Items (3)
Filtering by

Clear all filters

151431-Thumbnail Image.png
Description
Debugging is a boring, tedious, time consuming but inevitable step of software development and debugging multiple threaded applications with user interactions is even more complicated. Since concurrency and synchronism are normal features in Android mobile applications, the order of thread execution may vary in every run even with the same

Debugging is a boring, tedious, time consuming but inevitable step of software development and debugging multiple threaded applications with user interactions is even more complicated. Since concurrency and synchronism are normal features in Android mobile applications, the order of thread execution may vary in every run even with the same input. To make things worse, the target erroneous cases may happen just in a few specific runs. Besides, the randomness of user interactions makes the whole debugging procedure more unpredictable. Thus, debugging a multiple threaded application is a tough and challenging task. This thesis introduces a replay mechanism for debugging user interactive multiple threaded Android applications. The approach is based on the 'Lamport Clock' concept, 'Event Driven' implementation and 'Client-Server' architecture. The debugger tool described in this thesis provides a user controlled debugging environment where users or developers are allowed to use modified record application to generate a log file. During the record time, all the necessary events like thread creation, synchronization and user input are recorded. Therefore, based on the information contained in the generated log files, the debugger tool can replay the application off-line since log files provide the deterministic order of execution. In this case, user or developers can replay an application as many times as they need to pinpoint the errors in the applications.
ContributorsLu, He (Author) / Lee, Yann-Hang (Thesis advisor) / Fainekos, Georgios (Committee member) / Chen, Yinong (Committee member) / Arizona State University (Publisher)
Created2012
132426-Thumbnail Image.png
Description
There exist many very effective calendar platforms out there, from Google Calendar, to Microsoft’s Outlook, and various implementations by other service providers. While all those services serve their purpose, they may be missing in the capacity to be easily portable for some, or the capacity to offer to the user

There exist many very effective calendar platforms out there, from Google Calendar, to Microsoft’s Outlook, and various implementations by other service providers. While all those services serve their purpose, they may be missing in the capacity to be easily portable for some, or the capacity to offer to the user a ranking of their various events and tasks in order of priority. This is that, while some of these services do offer reliable support for portability on smaller devices, it could be even more beneficial to the user to constantly have an idea of which calendar entry they should prioritize at a given point in time, based on the necessities of each entry and regardless of which entry occurs first on a chronologic line. Many of these capacities are missing in the technology currently used at ASU for course management. This project attempts to address this issue by providing a Software Application that offers to store a user’s calendar events and present those events back to the user after arranging them by order of priority. The project makes use of technologies such as Fibrease, Angular and Android to make the service available through a web browser as well as an Android mobile client. We explore possible avenues of implementations to make the services of this platform accessible and usable through other existing platforms such as Blackboard or Canvas. We also consider ways to incorporate this software into the already existing workflow of other web platforms such as Google Calendar, Blackboard or Canvas, by allowing one platform to be aware of any item creation or update from the other platform, and thus removing the necessity of creating one calendar entry multiple times in different platforms.
ContributorsNdombe, Kelly (Author) / Chen, Yinong (Thesis director) / Balasooriya, Janaka (Committee member) / Computer Science and Engineering Program (Contributor) / Barrett, The Honors College (Contributor)
Created2019-05
151006-Thumbnail Image.png
Description
The Open Services Gateway initiative (OSGi) framework is a standard of module system and service platform that implements a complete and dynamic component model. Currently most of OSGi implementations are implemented by Java, which has similarities of Android language. With the emergence of Android operating system, due to the similarities

The Open Services Gateway initiative (OSGi) framework is a standard of module system and service platform that implements a complete and dynamic component model. Currently most of OSGi implementations are implemented by Java, which has similarities of Android language. With the emergence of Android operating system, due to the similarities between Java and Android, the integration of module system and service platform from OSGi to Android system attracts more and more attention. How to make OSGi run in Android is a hot topic, further, how to find a mechanism to enable communication between OSGi and Android system is a more advanced area than simply making OSGi running in Android. This paper, which aimed to fulfill SOA (Service Oriented Architecture) and CBA (Component Based Architecture), proposed a solution on integrating Felix OSGi platform with Android system in order to build up Distributed OSGi framework between mobile phones upon XMPP protocol. And in this paper, it not only successfully makes OSGi run on Android, but also invents a mechanism that makes a seamless collaboration between these two platforms.
ContributorsDong, Xinyi (Author) / Huang, Dijiang (Thesis advisor) / Dasgupta, Partha (Committee member) / Chen, Yinong (Committee member) / Arizona State University (Publisher)
Created2012