Matching Items (4)
Filtering by

Clear all filters

149369-Thumbnail Image.png
Description
Protein folding is essential in all cells, and misfolded proteins cause many diseases. In the Gram-negative bacterium Escherichia coli, protein folding must be carefully controlled during envelope biogenesis to maintain an effective permeability barrier between the cell and its environment. This study explores the relationship between envelope biogenesis

Protein folding is essential in all cells, and misfolded proteins cause many diseases. In the Gram-negative bacterium Escherichia coli, protein folding must be carefully controlled during envelope biogenesis to maintain an effective permeability barrier between the cell and its environment. This study explores the relationship between envelope biogenesis and cell stress, and the return to homeostasis during envelope stress. A major player in envelope biogenesis and stress response is the periplasmic protease DegP. Work presented here explores the growth phenotypes of cells lacking degP, including temperature sensitivity and lowered cell viability. Intriguingly, these cells also accumulate novel cytosolic proteins in their envelope not present in wild-type. Association of novel proteins was found to be growth time- and temperature-dependent, and was reversible, suggesting a dynamic nature of the envelope stress response. Two-dimensional gel electrophoresis of envelopes followed by mass spectrometry identified numerous cytoplasmic proteins, including the elongation factor/chaperone TufA, illuminating a novel cytoplasmic response to envelope stress. A suppressor of temperature sensitivity was characterized which corrects the defect caused by the lack of degP. Through random Tn10 insertion analysis, aribitrarily-primed polymerase chain reaction and three-factor cross, the suppressor was identified as a novel duplication-truncation of rpoE, here called rpoE'. rpoE' serves to subtly increase RpoE levels in the cell, resulting in a slight elevation of the SigmaE stress response. It does so without significantly affecting steady-state levels of outer membrane proteins, but rather by increasing proteolysis in the envelope independently of DegP. A multicopy suppressor of temperature sensitivity in strains lacking degP and expressing mutant OmpC proteins, yfgC, was characterized. Bioinformatics suggests that YfgC is a metalloprotease, and mutation of conserved domains resulted in mislocalization of the protein. yfgC-null mutants displayed additive antibiotic sensitivity and growth defects when combined with null mutation in another periplasmic chaperone, surA, suggesting that the two act in separate pathways during envelope biogenesis. Overexpression of YfgC6his altered steady-state levels of mutant OmpC in the envelope, showing a direct relationship between it and a major constituent of the envelope. Curiously, purified YfgC6his showed an increased propensity for crosslinking in mutant, but not in a wild-type, OmpC background.
ContributorsLeiser, Owen Paul (Author) / Misra, Rajeev (Thesis advisor) / Jacobs, Bertram (Committee member) / Chang, Yung (Committee member) / Stout, Valerie (Committee member) / Arizona State University (Publisher)
Created2010
171382-Thumbnail Image.png
Description
Monkeypox virus (MPXV) is an orthopoxvirus that causes smallpox-like disease and has up to a 10% mortality rate, depending on the infectious strain. The global eradication of the smallpox virus has led to the decrease in smallpox vaccinations, which has led to a drastic increase in the number of human

Monkeypox virus (MPXV) is an orthopoxvirus that causes smallpox-like disease and has up to a 10% mortality rate, depending on the infectious strain. The global eradication of the smallpox virus has led to the decrease in smallpox vaccinations, which has led to a drastic increase in the number of human MPXV cases. MPXV has been named the most important orthopoxvirus to infect humans since the eradication of smallpox and has been the causative agent of the 2022 world-wide MPXV outbreak. Despite being highly pathogenic, MPXV contains a natural truncation at the N-terminus of its E3 homologue. Vaccinia virus (VACV) E3 protein has two domains: an N- terminus Z-form nucleic acid binding domain (Z-BD) and a C-terminus double stranded RNA binding domain (dsRBD). Both domains are required for pathogenesis, interferon (IFN) resistance, and protein kinase R (PKR) inhibition. The N-terminus is required for evasion of Z-DNA binding protein 1 (ZBP1)-dependent necroptosis. ZBP1 binding to Z- form deoxyribonucleic acid/ribonucleic acid (Z-DNA/RNA) leads to activation of receptor-interacting protein kinase 3 (RIPK3) leading to mixed lineage kinase domain- like (MLKL) phosphorylation, aggregation and cell death. This study investigated how different cell lines combat MPXV infection and how MPXV has evolved ways to circumvent the host response. MPXV is shown to inhibit necroptosis in L929 cells by degrading RIPK3 through the viral inducer of RIPK3 degradation (vIRD) and by inhibiting MLKL aggregation. Additionally, the data shows that IFN treatment efficiently inhibits MPXV replication in a ZBP1-, RIPK3-, and MLKL- dependent manner, but independent of necroptosis. Also, the data suggests that an IFN inducer with a pancaspase or proteasome inhibitor could potentially be a beneficial treatment against MPXV infections. Furthermore, it reveals a link between PKR and pathogen-induced necroptosis that has not been previously described.
ContributorsWilliams, Jacqueline (Author) / Jacobs, Bertram (Thesis advisor) / Langland, Jeffrey (Committee member) / Lake, Douglas (Committee member) / Varsani, Arvind (Committee member) / Arizona State University (Publisher)
Created2022
132402-Thumbnail Image.png
Description
With the advent of precision medicine, oncologists aim to target tumors that do not respond well to conventional treatment. One such therapy is oncolytic virotherapy, a treatment reliant on viral replication for tumor specific killing. Downregulation of the proteins RIP3 kinase, DAI or MLKL can result in a nonfunctional programmed

With the advent of precision medicine, oncologists aim to target tumors that do not respond well to conventional treatment. One such therapy is oncolytic virotherapy, a treatment reliant on viral replication for tumor specific killing. Downregulation of the proteins RIP3 kinase, DAI or MLKL can result in a nonfunctional programmed necroptotic cell death pathway, common amongst breast cancer and melanoma. Vaccinia virus (VACV) mutants with a nonfunctional E3 protein are able to selectively replicate in necroptosis deficient cells but not in necroptosis competent cells, making them potential candidates for oncolytic virotherapy. In order to establish the efficacy and selectivity of this treatment, an accurate tumor model is required. Eight established breast adenocarcinomas and two established melanomas were selected as potential candidates, both human and murine. A pan screening method for necroptosis was established utilizing western blot analysis for expression of aforementioned proteins following various induction methods such as IFN α or VACV infection. In addition, live cell imaging after treatment with tumor necrosis factor (TNFα) and the pan-caspase inhibitor zVAD-fmk was used as a method to visualize necroptosis pathway functionality. Based on these results, cell lines will be selected and modified to create a breast cancer model with cells that are syngeneic, differing only in expression of either RIP3. VACV can be tested for tumor volume reduction in these models to ask if RIP3 expression affects efficacy of mutant VACV as an oncolytic virus.
ContributorsKumar, Aradhana (Author) / Jacobs, Bertram (Thesis director) / McFadden, Grant (Committee member) / Borad, Mitesh (Committee member) / School of Life Sciences (Contributor, Contributor) / Barrett, The Honors College (Contributor)
Created2019-05
161439-Thumbnail Image.png
Description
Programmed cell death plays an important role in a variety of processes that promote the survival of the host organism. Necroptosis, a form of programmed cell death, occurs through a signaling pathway involving receptor-interacting serine-threonine protein kinase 3 (RIPK3). In response to vaccinia virus infection, necroptosis is induced through DNA-induced

Programmed cell death plays an important role in a variety of processes that promote the survival of the host organism. Necroptosis, a form of programmed cell death, occurs through a signaling pathway involving receptor-interacting serine-threonine protein kinase 3 (RIPK3). In response to vaccinia virus infection, necroptosis is induced through DNA-induced activator of interferon (DAI), which activates RIPK3, leading to death of the cell and thereby inhibiting further viral replication in host cells. DAI also localizes into stress granules, accumulations of mRNAs that have stalled in translation due to cellular stress. The toxin arsenite, a canonical inducer of stress granule formation, was used in this project to study necroptosis. By initiating necroptosis with arsenite and vaccinia virus, this research project investigated the roles of necroptosis proteins and their potential localization into stress granules. The two aims of this research project were to determine whether stress granules are important for arsenite- and virus-induced necroptosis, and whether the proteins DAI and RIPK3 localize into stress granules. The first aim was investigated by establishing a DAI and RIPK3 expression system in U2OS cells; arsenite treatment or vaccinia virus infection was then performed on the U2OS cells as well as on U2OSΔΔG3BP1/2 cells, which are not able to form stress granules. The second aim was carried out by designing fluorescent tagging for the necroptosis proteins in order to visualize protein localization with fluorescent microscopy. The results show that arsenite induces DAI-dependent necroptosis in U2OS cells and that this arsenite-induced necroptosis likely requires stress granules. In addition, the results show that vaccinia virus induces DAI-dependent necroptosis that also likely requires stress granules in U2OS cells. Furthermore, a fluorescent RIPK3 construct was created that will allowfor future studies on protein localization during necroptosis and can be used to answer questions regarding localization of necroptosis proteins into stress granules. This project therefore contributes to a greater understanding of the roles of DAI and RIPK3 in necroptosis, as well as the roles of stress granules in necroptosis, both of which are important in research regarding viral infection and cellular stress.
ContributorsGogerty, Carolina (Author) / Jacobs, Bertram (Thesis advisor) / Langland, Jeffrey (Committee member) / Jentarra, Garilyn (Committee member) / Arizona State University (Publisher)
Created2021