Matching Items (2)
Filtering by

Clear all filters

190710-Thumbnail Image.png
Description
Studying natural variations in the isotopic composition of oxygen-sensitive elements in ancient marine sediments is a powerful way to study the geochemical evolution of Earth’s environments in the past. My dissertation focused on two broad aspects of isotope geochemistry: 1) the development of rhenium (Re) isotopes as a paleoredox and

Studying natural variations in the isotopic composition of oxygen-sensitive elements in ancient marine sediments is a powerful way to study the geochemical evolution of Earth’s environments in the past. My dissertation focused on two broad aspects of isotope geochemistry: 1) the development of rhenium (Re) isotopes as a paleoredox and nuclear forensics tool, and 2) the application of mercury (Hg) isotopes as a tool to trace Hg mobility in the environment and what this movement means for isotopic changes in sedimentary rocks used to study Earth’s past. Chapter 2 is the first examination of Re isotopes in sedimentary rocks that formed ~2.5 billion years ago during a period of ocean and atmospheric oxygenation prior to the Great Oxidation Event. The data show variations in Re isotope ratios coincide with evidence for changes in oceanic and atmospheric oxygenation, supporting the use of Re isotopes as a tool to track paleoredox conditions throughout Earth's history. Another application of rhenium isotopes is explored in the third chapter on nuclear forensics. Rhenium isotopes in uranium ore concentrates (UOC) from known production locations revealed more than double the range of isotope fractionation previously reported for any natural geologic samples so far. These first Re isotope ratio data indicate that Re is a promising new tool for provenance assessment of UOCs. Chapter 4 focuses on geochemical applications of Hg isotopes. Mercury isotopes in shales are a geochemical tool that can be utilized to study the prevalence of global volcanism and detect oxygen-depleted conditions in the photic zone of ancient oceans. I measured Hg isotope ratio data from a Devonian shale bed in a road cut with varying degrees of weathering that has been well characterized for variations in elemental concentrations and other isotopic ratios. I found significant variation in mass-dependent and mass-independent Hg isotope fractionation in weathered samples. Surprisingly, however, I observed both loss and gain of Hg, when only significant loss was expected based on prior weathering studies. These findings improve the understanding of Hg mobility in nature and indicate that mass-independent fractionation can be modified after deposition in surprising ways.
ContributorsSullivan, Daniel Louis (Author) / Anbar, Ariel D (Thesis advisor) / Gordon, Gwyneth W (Committee member) / Hartnett, Hilairy E (Committee member) / Hervig, Richard L (Committee member) / Zheng, Wang (Committee member) / Arizona State University (Publisher)
Created2023
168483-Thumbnail Image.png
Description
All known life requires three main metabolic components to grow: an energy source, an electron source, and a carbon source. For energy, an organism can use light or chemical reactions. For electrons, an organism can use metals or organic molecules. For carbon, an organism can use organic or inorganic carbon.

All known life requires three main metabolic components to grow: an energy source, an electron source, and a carbon source. For energy, an organism can use light or chemical reactions. For electrons, an organism can use metals or organic molecules. For carbon, an organism can use organic or inorganic carbon. Life has adapted to use any mixture of the endpoints for each of the three metabolic components. Understanding how these components are incorporated in a living bacterium on Earth in modern times is relatively straight forward. This becomes much more complicated when trying to determine what metabolisms may have been used in ancient times on Earth or potential novel metabolisms that exist on other planets. One way to examine these possibilities is by creating genetically modified mutant bacteria that have novel metabolisms or proposed ancient metabolisms to study. This thesis is the beginning of a broader study to understand novel metabolisms using Heliobacteria modesticaldum. H. modesticaldum was grown under different environmental conditions to isolate the impacts of energy, electron, and carbon sources on carbon and nitrogen isotope fractionation. Additionally, the wild type and a novel mutant H. modesticaldum were compared to measure the effects of specific enzymes on carbon and nitrogen isotope fractionation. By forcing the bacterium to adapt to different conditions, variation in carbon and nitrogen content and isotopic signature are detected. Specifically, by forcing the bacterium to fix nitrogen as opposed to nitrogen incorporation, the isotopic signature of the bacterium had a noticeable change. Themutant H. modesticaldum also had a different isotopic signature than the wild type. Without the enzyme citrate synthase, H. modesticaldum had to adapt its carbon metabolic cycle, creating a measurable carbon isotope fractionation. The results described here offer new insight into the effects of metabolism on carbon and nitrogen fractionation of ancient or novel organisms.
ContributorsElms, Nicholas (Author) / Hartnett, Hilairy E (Thesis advisor) / Redding, Kevin (Committee member) / Trembath-Reichert, Elizabeth (Committee member) / Anbar, Ariel D (Committee member) / Arizona State University (Publisher)
Created2021