Matching Items (7)
Filtering by

Clear all filters

151978-Thumbnail Image.png
Description
The current paper presents two studies that examine how asymmetries during interpersonal coordination are compensated for. It was predicted that destabilizing effects of asymmetries are stabilized through the recruitment and suppression of motor degrees-of-freedom (df). Experiment 1 examined this effect by having participants coordinate line movements of different orientations. Greater

The current paper presents two studies that examine how asymmetries during interpersonal coordination are compensated for. It was predicted that destabilizing effects of asymmetries are stabilized through the recruitment and suppression of motor degrees-of-freedom (df). Experiment 1 examined this effect by having participants coordinate line movements of different orientations. Greater differences in asymmetries between participants yielded greater spatial deviation, resulting in the recruitment of df. Experiment 2 examined whether coordination of movements asymmetrical in shape (circle and line) yield simultaneous recruitment and suppression of df. This experiment also tested whether the initial stability of the performed movement alters the amount of change in df. Results showed that changes in df were exhibited as circles decreasing in circularity and lines increasing in circularity. Further, more changes in df were found circular (suppression) compared to line (recruitment) movements.
ContributorsFine, Justin (Author) / Amazeen, Eric L (Thesis advisor) / Amazeen, Polemnia G (Committee member) / Brewer, Gene A. (Committee member) / Arizona State University (Publisher)
Created2013
162238-Thumbnail Image.png
DescriptionUnderstanding the evolution of opinions is a delicate task as the dynamics of how one changes their opinion based on their interactions with others are unclear.
ContributorsWeber, Dylan (Author) / Motsch, Sebastien (Thesis advisor) / Lanchier, Nicolas (Committee member) / Platte, Rodrigo (Committee member) / Armbruster, Dieter (Committee member) / Fricks, John (Committee member) / Arizona State University (Publisher)
Created2021
Description
A continuously and stably stratified fluid contained in a square cavity subjected to harmonic body forcing is studied numerically by solving the Navier-Stokes equations under the Boussinesq approximation. Complex dynamics are observed near the onset of instability of the basic state, which is a flow configuration that is always an

A continuously and stably stratified fluid contained in a square cavity subjected to harmonic body forcing is studied numerically by solving the Navier-Stokes equations under the Boussinesq approximation. Complex dynamics are observed near the onset of instability of the basic state, which is a flow configuration that is always an exact analytical solution of the governing equations. The instability of the basic state to perturbations is first studied with linear stability analysis (Floquet analysis), revealing a multitude of intersecting synchronous and subharmonic resonance tongues in parameter space. A modal reduction method for determining the locus of basic state instability is also shown, greatly simplifying the computational overhead normally required by a Floquet study. Then, a study of the nonlinear governing equations determines the criticality of the basic state's instability, and ultimately characterizes the dynamics of the lowest order spatial mode by the three discovered codimension-two bifurcation points within the resonance tongue. The rich dynamics include a homoclinic doubling cascade that resembles the logistic map and a multitude of gluing bifurcations.

The numerical techniques and methodologies are first demonstrated on a homogeneous fluid contained within a three-dimensional lid-driven cavity. The edge state technique and linear stability analysis through Arnoldi iteration are used to resolve the complex dynamics of the canonical shear-driven benchmark problem. The techniques here lead to a dynamical description of an instability mechanism, and the work serves as a basis for the remainder of the dissertation.
ContributorsYalim, Jason (Author) / Welfert, Bruno D. (Thesis advisor) / Lopez, Juan M. (Thesis advisor) / Jones, Donald (Committee member) / Tang, Wenbo (Committee member) / Platte, Rodrigo (Committee member) / Arizona State University (Publisher)
Created2019
157010-Thumbnail Image.png
Description
I investigate two models interacting agent systems: the first is motivated by the flocking and swarming behaviors in biological systems, while the second models opinion formation in social networks. In each setting, I define natural notions of convergence (to a ``flock" and to a ``consensus'', respectively), and study the convergence

I investigate two models interacting agent systems: the first is motivated by the flocking and swarming behaviors in biological systems, while the second models opinion formation in social networks. In each setting, I define natural notions of convergence (to a ``flock" and to a ``consensus'', respectively), and study the convergence properties of each in the limit as $t \rightarrow \infty$. Specifically, I provide sufficient conditions for the convergence of both of the models, and conduct numerical experiments to study the resulting solutions.
ContributorsTheisen, Ryan (Author) / Motsch, Sebastien (Thesis advisor) / Lanchier, Nicholas (Committee member) / Kostelich, Eric (Committee member) / Arizona State University (Publisher)
Created2018
153814-Thumbnail Image.png
Description
The current work investigated the emergence of leader-follower roles during social motor coordination. Previous research has presumed a leader during coordination assumes a spatiotemporally advanced position (e.g., relative phase lead). While intuitive, this definition discounts what role-taking implies. Leading and following is defined as one person (or limb) having a

The current work investigated the emergence of leader-follower roles during social motor coordination. Previous research has presumed a leader during coordination assumes a spatiotemporally advanced position (e.g., relative phase lead). While intuitive, this definition discounts what role-taking implies. Leading and following is defined as one person (or limb) having a larger influence on the motor state changes of another; the coupling is asymmetric. Three experiments demonstrated asymmetric coupling effects emerge when task or biomechanical asymmetries are imputed between actors. Participants coordinated in-phase (Ф =0o) swinging of handheld pendulums, which differed in their uncoupled eigenfrequencies (frequency detuning). Coupling effects were recovered through phase-amplitude modeling. Experiment 1 examined leader-follower coupling during a bidirectional task. Experiment 2 employed an additional coupling asymmetry by assigning an explicit leader and follower. Both experiment 1 and 2 demonstrated asymmetric coupling effects with increased detuning. In experiment 2, though, the explicit follower exhibited a phase lead in nearly all conditions. These results confirm that coupling direction was not determined strictly by relative phasing. A third experiment examined the question raised by the previous two, which is how could someone follow from ahead (i.e., phase lead in experiment 2). This was tested using a combination of frequency detuning and amplitude asymmetry requirements (e.g., 1:1 or 1:2 & 2:1). Results demonstrated larger amplitude movements drove the coupling towards the person with the smaller amplitude; small amplitude movements exhibited a phase lead, despite being a follower in coupling terms. These results suggest leader-follower coupling is a general property of social motor coordination. Predicting when such coupling effects occur is emphasized by the stability reducing effects of coordinating asymmetric components. Generally, the implication is role-taking is an emergent strategy of dividing up coordination stabilizing efforts unequally between actors (or limbs).
ContributorsFine, Justin (Author) / Amazeen, Eric L. (Thesis advisor) / Amazeen, Polemnia G. (Committee member) / Brewer, Gene (Committee member) / Santello, Marco (Committee member) / Arizona State University (Publisher)
Created2015
152845-Thumbnail Image.png
Description
There has been important progress in understanding ecological dynamics through the development of the theory of ecological stoichiometry. This fast growing theory provides new constraints and mechanisms that can be formulated into mathematical models. Stoichiometric models incorporate the effects of both food quantity and food quality into a single framework

There has been important progress in understanding ecological dynamics through the development of the theory of ecological stoichiometry. This fast growing theory provides new constraints and mechanisms that can be formulated into mathematical models. Stoichiometric models incorporate the effects of both food quantity and food quality into a single framework that produce rich dynamics. While the effects of nutrient deficiency on consumer growth are well understood, recent discoveries in ecological stoichiometry suggest that consumer dynamics are not only affected by insufficient food nutrient content (low phosphorus (P): carbon (C) ratio) but also by excess food nutrient content (high P:C). This phenomenon, known as the stoichiometric knife edge, in which animal growth is reduced not only by food with low P content but also by food with high P content, needs to be incorporated into mathematical models. Here we present Lotka-Volterra type models to investigate the growth response of Daphnia to algae of varying P:C ratios. Using a nonsmooth system of two ordinary differential equations (ODEs), we formulate the first model to incorporate the phenomenon of the stoichiometric knife edge. We then extend this stoichiometric model by mechanistically deriving and tracking free P in the environment. This resulting full knife edge model is a nonsmooth system of three ODEs. Bifurcation analysis and numerical simulations of the full model, that explicitly tracks phosphorus, leads to quantitatively different predictions than previous models that neglect to track free nutrients. The full model shows that the grazer population is sensitive to excess nutrient concentrations as a dynamical free nutrient pool induces extreme grazer population density changes. These modeling efforts provide insight on the effects of excess nutrient content on grazer dynamics and deepen our understanding of the effects of stoichiometry on the mechanisms governing population dynamics and the interactions between trophic levels.
ContributorsPeace, Angela (Author) / Kuang, Yang (Thesis advisor) / Elser, James J (Committee member) / Baer, Steven (Committee member) / Tang, Wenbo (Committee member) / Kang, Yun (Committee member) / Arizona State University (Publisher)
Created2014
155323-Thumbnail Image.png
Description
The three-dimensional flow contained in a rapidly rotating circular

split cylinder is studied numerically solving the Navier--Stokes

equations. The cylinder is completely filled with fluid

and is split at the midplane. Three different types of boundary

conditions were imposed, leading to a variety of instabilities and

complex flow dynamics.

The first configuration has a strong

The three-dimensional flow contained in a rapidly rotating circular

split cylinder is studied numerically solving the Navier--Stokes

equations. The cylinder is completely filled with fluid

and is split at the midplane. Three different types of boundary

conditions were imposed, leading to a variety of instabilities and

complex flow dynamics.

The first configuration has a strong background rotation and a small

differential rotation between the two halves. The axisymmetric flow

was first studied identifying boundary layer instabilities which

produce inertial waves under some conditions. Limit cycle states and

quasiperiodic states were found, including some period doubling

bifurcations. Then, a three-dimensional study was conducted

identifying low and high azimuthal wavenumber rotating waves due to

G’ortler and Tollmien–-Schlichting type instabilities. Over most of

the parameter space considered, quasiperiodic states were found where

both types of instabilities were present.

In the second configuration, both cylinder halves are in exact

counter-rotation, producing an O(2) symmetry in the system. The basic state flow dynamic

is dominated by the shear layer created

in the midplane. By changing the speed rotation and the aspect ratio

of the cylinder, the flow loses symmetries in a variety of ways

creating static waves, rotating waves, direction reversing waves and

slow-fast pulsing waves. The bifurcations, including infinite-period

bifurcations, were characterized and the flow dynamics was elucidated.

Additionally, preliminary experimental results for this case are

presented.

In the third set up, with oscillatory boundary conditions, inertial

wave beams were forced imposing a range of frequencies. These beams

emanate from the corner of the cylinder and from the split at the

midplane, leading to destructive/constructive interactions which

produce peaks in vorticity for some specific frequencies. These

frequencies are shown to be associated with the resonant Kelvin

modes. Furthermore, a study of the influence of imposing a phase

difference between the oscillations of the two halves of the cylinder

led to the interesting result that different Kelvin

modes can be excited depending on the phase difference.
ContributorsGutierrez Castillo, Paloma (Author) / Lopez, Juan M. (Thesis advisor) / Herrmann, Marcus (Committee member) / Platte, Rodrigo (Committee member) / Welfert, Bruno (Committee member) / Tang, Wenbo (Committee member) / Arizona State University (Publisher)
Created2017