Matching Items (2)
Filtering by

Clear all filters

134779-Thumbnail Image.png
Description
Pitch and timbre perception are two important dimensions of auditory perception. These aspects of sound aid the understanding of our environment, and contribute to normal everyday functioning. It is therefore important to determine the nature of perceptual interaction between these two dimensions of sound. This study tested the interactions between

Pitch and timbre perception are two important dimensions of auditory perception. These aspects of sound aid the understanding of our environment, and contribute to normal everyday functioning. It is therefore important to determine the nature of perceptual interaction between these two dimensions of sound. This study tested the interactions between pitch perception associated with the fundamental frequency (F0) and sharpness perception associated with the spectral slope of harmonic complex tones in normal hearing (NH) listeners and cochlear implant (CI) users. Pitch and sharpness ranking was measured without changes in the non-target dimension (Experiment 1), with different amounts of unrelated changes in the non-target dimension (Experiment 2), and with congruent/incongruent changes of similar perceptual salience in the non-target dimension (Experiment 3). The results showed that CI users had significantly worse pitch and sharpness ranking thresholds than NH listeners. Pitch and sharpness perception had symmetric interactions in NH listeners. However, for CI users, spectral slope changes significantly affected pitch ranking, while F0 changes had no significant effect on sharpness ranking. CI users' pitch ranking sensitivity was significantly better with congruent than with incongruent spectral slope changes. These results have important implications for CI processing strategies to better transmit pitch and timbre cues to CI users.
ContributorsSoslowsky, Samara Miranda (Author) / Luo, Xin (Thesis director) / Yost, William (Committee member) / Dorman, Michael (Committee member) / Department of Speech and Hearing Science (Contributor) / Barrett, The Honors College (Contributor)
Created2016-12
132359-Thumbnail Image.png
Description
Cochlear implant (CI) successfully restores hearing sensation to profoundly deaf patients, but its
performance is limited by poor spectral resolution. Acoustic CI simulation has been widely used
in normal-­hearing (NH) listeners to study the effect of spectral resolution on speech perception,
while avoiding patient-­related confounds. It is unclear how speech production may change

Cochlear implant (CI) successfully restores hearing sensation to profoundly deaf patients, but its
performance is limited by poor spectral resolution. Acoustic CI simulation has been widely used
in normal-­hearing (NH) listeners to study the effect of spectral resolution on speech perception,
while avoiding patient-­related confounds. It is unclear how speech production may change with
the degree of spectral degradation of auditory feedback as experience by CI users. In this study,
a real-­time sinewave CI simulation was developed to provide NH subjects with auditory
feedback of different spectral resolution (1, 2, 4, and 8 channels). NH subjects were asked to
produce and identify vowels, as well as recognize sentences while listening to the real-­time CI
simulation. The results showed that sentence recognition scores with the real-­time CI simulation
improved with more channels, similar to those with the traditional off-­line CI simulation.
Perception of a vowel continuum “HEAD”-­ “HAD” was near chance with 1, 2, and 4 channels,
and greatly improved with 8 channels and full spectrum. The spectral resolution of auditory
feedback did not significantly affect any acoustic feature of vowel production (e.g., vowel space
area, mean amplitude, mean and variability of fundamental and formant frequencies). There
was no correlation between vowel production and perception. The lack of effect of auditory
feedback spectral resolution on vowel production was likely due to the limited exposure of NH
subjects to CI simulation and the limited frequency ranges covered by the sinewave carriers of
CI simulation. Future studies should investigate the effects of various CI processing parameters
on speech production using a noise-­band CI simulation.
ContributorsPerez Lustre, Sarahi (Author) / Luo, Xin (Thesis director) / Daliri, Ayoub (Committee member) / Division of Teacher Preparation (Contributor) / College of Health Solutions (Contributor, Contributor) / Barrett, The Honors College (Contributor)
Created2019-05