Matching Items (4)
Filtering by

Clear all filters

132806-Thumbnail Image.png
Description
The 2017-2018 Influenza season was marked by the death of 80,000 Americans: the highest flu-related death toll in a decade. Further, the yearly economic toll to the US healthcare system and society is on the order of tens of billions of dollars. It is vital that we gain a better

The 2017-2018 Influenza season was marked by the death of 80,000 Americans: the highest flu-related death toll in a decade. Further, the yearly economic toll to the US healthcare system and society is on the order of tens of billions of dollars. It is vital that we gain a better understanding of the dynamics of influenza transmission in order to prevent its spread. Viral DNA sequences examined using bioinformatics methods offer a rich framework with which to monitor the evolution and spread of influenza for public health surveillance. To better understand the influenza epidemic during the severe 2017-2018 season, we established a passive surveillance system at Arizona State University’s Tempe Campus Health Services beginning in January 2018. From this system, nasopharyngeal samples screening positive for influenza were collected. Using these samples, molecular DNA sequences will be generated using a combined multiplex RT-PCR and NGS approach. Phylogenetic analysis will be used to infer the severity and temporal course of the 2017-2018 influenza outbreak on campus as well as the 2018-2019 flu season. Through this surveillance system, we will gain knowledge of the dynamics of influenza spread in a university setting and will use this information to inform public health strategies.
ContributorsMendoza, Lydia Marie (Author) / Scotch, Matthew (Thesis director) / Hogue, Brenda (Committee member) / School of Life Sciences (Contributor) / Barrett, The Honors College (Contributor)
Created2019-05
133301-Thumbnail Image.png
Description
Phylogenetic analyses that were conducted in the past didn't have the ability or functionality to inform and implement useful public health decisions while using clustering. Models can be constructed to conduct any further analyses for the result of meaningful data to be used in the future of public health informatics.

Phylogenetic analyses that were conducted in the past didn't have the ability or functionality to inform and implement useful public health decisions while using clustering. Models can be constructed to conduct any further analyses for the result of meaningful data to be used in the future of public health informatics. A phylogenetic tree is considered one of the best ways for researchers to visualize and analyze the evolutionary history of a certain virus. The focus of this study was to research HIV phylodynamic and phylogenetic methods. This involved identifying the fast growing HIV transmission clusters and rates for certain risk groups in the US. In order to achieve these results an HIV database was required to retrieve real-time data for implementation, alignment software for multiple sequence alignment, Bayesian analysis software for the development and manipulation of models, and graphical tools for visualizing the output from the models created. This study began by conducting a literature review on HIV phylogeographies and phylodynamics. Sequence data was then obtained from a sequence database to be run in a multiple alignment software. The sequence that was obtained was unaligned which is why the alignment was required. Once the alignment was performed, the same file was loaded into a Bayesian analysis software for model creation of a phylogenetic tree. When the model was created, the tree was edited in a tree visualization software for the user to easily interpret. From this study the output of the tree resulted the way it did, due to a distant homology or the mixing of certain parameters. For a further continuation of this study, it would be interesting to use the same aligned sequence and use different model parameter selections for the initial creation of the model to see how the output changes. This is because one small change for the model parameter could greatly affect the output of the phylogenetic tree.
ContributorsNandan, Meghana (Author) / Scotch, Matthew (Thesis director) / Liu, Li (Committee member) / Biomedical Informatics Program (Contributor) / Barrett, The Honors College (Contributor)
Created2018-05
154999-Thumbnail Image.png
Description
Social media is becoming increasingly popular as a platform for sharing personal health-related information. This information can be utilized for public health monitoring tasks such as pharmacovigilance via the use of Natural Language Processing (NLP) techniques. One of the critical steps in information extraction pipelines is Named Entity Recognition

Social media is becoming increasingly popular as a platform for sharing personal health-related information. This information can be utilized for public health monitoring tasks such as pharmacovigilance via the use of Natural Language Processing (NLP) techniques. One of the critical steps in information extraction pipelines is Named Entity Recognition (NER), where the mentions of entities such as diseases are located in text and their entity type are identified. However, the language in social media is highly informal, and user-expressed health-related concepts are often non-technical, descriptive, and challenging to extract. There has been limited progress in addressing these challenges, and advanced machine learning-based NLP techniques have been underutilized. This work explores the effectiveness of different machine learning techniques, and particularly deep learning, to address the challenges associated with extraction of health-related concepts from social media. Deep learning has recently attracted a lot of attention in machine learning research and has shown remarkable success in several applications particularly imaging and speech recognition. However, thus far, deep learning techniques are relatively unexplored for biomedical text mining and, in particular, this is the first attempt in applying deep learning for health information extraction from social media.

This work presents ADRMine that uses a Conditional Random Field (CRF) sequence tagger for extraction of complex health-related concepts. It utilizes a large volume of unlabeled user posts for automatic learning of embedding cluster features, a novel application of deep learning in modeling the similarity between the tokens. ADRMine significantly improved the medical NER performance compared to the baseline systems.

This work also presents DeepHealthMiner, a deep learning pipeline for health-related concept extraction. Most of the machine learning methods require sophisticated task-specific manual feature design which is a challenging step in processing the informal and noisy content of social media. DeepHealthMiner automatically learns classification features using neural networks and utilizing a large volume of unlabeled user posts. Using a relatively small labeled training set, DeepHealthMiner could accurately identify most of the concepts, including the consumer expressions that were not observed in the training data or in the standard medical lexicons outperforming the state-of-the-art baseline techniques.
ContributorsNikfarjam, Azadeh (Author) / Gonzalez, Graciela (Thesis advisor) / Greenes, Robert (Committee member) / Scotch, Matthew (Committee member) / Arizona State University (Publisher)
Created2016
157992-Thumbnail Image.png
Description
Unstructured texts containing biomedical information from sources such as electronic health records, scientific literature, discussion forums, and social media offer an opportunity to extract information for a wide range of applications in biomedical informatics. Building scalable and efficient pipelines for natural language processing and extraction of biomedical information plays an

Unstructured texts containing biomedical information from sources such as electronic health records, scientific literature, discussion forums, and social media offer an opportunity to extract information for a wide range of applications in biomedical informatics. Building scalable and efficient pipelines for natural language processing and extraction of biomedical information plays an important role in the implementation and adoption of applications in areas such as public health. Advancements in machine learning and deep learning techniques have enabled rapid development of such pipelines. This dissertation presents entity extraction pipelines for two public health applications: virus phylogeography and pharmacovigilance. For virus phylogeography, geographical locations are extracted from biomedical scientific texts for metadata enrichment in the GenBank database containing 2.9 million virus nucleotide sequences. For pharmacovigilance, tools are developed to extract adverse drug reactions from social media posts to open avenues for post-market drug surveillance from non-traditional sources. Across these pipelines, high variance is observed in extraction performance among the entities of interest while using state-of-the-art neural network architectures. To explain the variation, linguistic measures are proposed to serve as indicators for entity extraction performance and to provide deeper insight into the domain complexity and the challenges associated with entity extraction. For both the phylogeography and pharmacovigilance pipelines presented in this work the annotated datasets and applications are open source and freely available to the public to foster further research in public health.
ContributorsMagge, Arjun (Author) / Scotch, Matthew (Thesis advisor) / Gonzalez-Hernandez, Graciela (Thesis advisor) / Greenes, Robert (Committee member) / Arizona State University (Publisher)
Created2019