Matching Items (14)
Filtering by

Clear all filters

132806-Thumbnail Image.png
Description
The 2017-2018 Influenza season was marked by the death of 80,000 Americans: the highest flu-related death toll in a decade. Further, the yearly economic toll to the US healthcare system and society is on the order of tens of billions of dollars. It is vital that we gain a better

The 2017-2018 Influenza season was marked by the death of 80,000 Americans: the highest flu-related death toll in a decade. Further, the yearly economic toll to the US healthcare system and society is on the order of tens of billions of dollars. It is vital that we gain a better understanding of the dynamics of influenza transmission in order to prevent its spread. Viral DNA sequences examined using bioinformatics methods offer a rich framework with which to monitor the evolution and spread of influenza for public health surveillance. To better understand the influenza epidemic during the severe 2017-2018 season, we established a passive surveillance system at Arizona State University’s Tempe Campus Health Services beginning in January 2018. From this system, nasopharyngeal samples screening positive for influenza were collected. Using these samples, molecular DNA sequences will be generated using a combined multiplex RT-PCR and NGS approach. Phylogenetic analysis will be used to infer the severity and temporal course of the 2017-2018 influenza outbreak on campus as well as the 2018-2019 flu season. Through this surveillance system, we will gain knowledge of the dynamics of influenza spread in a university setting and will use this information to inform public health strategies.
ContributorsMendoza, Lydia Marie (Author) / Scotch, Matthew (Thesis director) / Hogue, Brenda (Committee member) / School of Life Sciences (Contributor) / Barrett, The Honors College (Contributor)
Created2019-05
133301-Thumbnail Image.png
Description
Phylogenetic analyses that were conducted in the past didn't have the ability or functionality to inform and implement useful public health decisions while using clustering. Models can be constructed to conduct any further analyses for the result of meaningful data to be used in the future of public health informatics.

Phylogenetic analyses that were conducted in the past didn't have the ability or functionality to inform and implement useful public health decisions while using clustering. Models can be constructed to conduct any further analyses for the result of meaningful data to be used in the future of public health informatics. A phylogenetic tree is considered one of the best ways for researchers to visualize and analyze the evolutionary history of a certain virus. The focus of this study was to research HIV phylodynamic and phylogenetic methods. This involved identifying the fast growing HIV transmission clusters and rates for certain risk groups in the US. In order to achieve these results an HIV database was required to retrieve real-time data for implementation, alignment software for multiple sequence alignment, Bayesian analysis software for the development and manipulation of models, and graphical tools for visualizing the output from the models created. This study began by conducting a literature review on HIV phylogeographies and phylodynamics. Sequence data was then obtained from a sequence database to be run in a multiple alignment software. The sequence that was obtained was unaligned which is why the alignment was required. Once the alignment was performed, the same file was loaded into a Bayesian analysis software for model creation of a phylogenetic tree. When the model was created, the tree was edited in a tree visualization software for the user to easily interpret. From this study the output of the tree resulted the way it did, due to a distant homology or the mixing of certain parameters. For a further continuation of this study, it would be interesting to use the same aligned sequence and use different model parameter selections for the initial creation of the model to see how the output changes. This is because one small change for the model parameter could greatly affect the output of the phylogenetic tree.
ContributorsNandan, Meghana (Author) / Scotch, Matthew (Thesis director) / Liu, Li (Committee member) / Biomedical Informatics Program (Contributor) / Barrett, The Honors College (Contributor)
Created2018-05
133149-Thumbnail Image.png
Description
Bats (order Chiroptera) are the longest lived mammals for their size, with particularly extreme longevity evolving in the family Vespertilionidae, or vesper bats. Because of this, researchers have proposed using bats to study ageing and cancer suppression. Here, we study gene duplications across mammalian genomes and show that, similar to

Bats (order Chiroptera) are the longest lived mammals for their size, with particularly extreme longevity evolving in the family Vespertilionidae, or vesper bats. Because of this, researchers have proposed using bats to study ageing and cancer suppression. Here, we study gene duplications across mammalian genomes and show that, similar to previous findings in elephants, bats have experienced duplications of the tumor suppressor gene TP53, including five genomic copies in the genome of the little brown bat (Myotis lucifugus) and two copies in Brandt's bat (Myotis brandtii). These species can live 37 and 41 years, respectively, despite having an adult body mass of only ~7 grams. We use evolutionary genetics and next generation sequencing approaches to show that positive selection has acted on the TP53 locus across bats, and two recently duplicated TP53 gene copies in the little brown bat are both highly conserved and expressed, suggesting they are functional. We also report an extraordinary genomic copy number expansion of the tumor suppressor gene FBXO31 in the common ancestor of vesper bats which accelerated in the Myotis lineage, leading to 34\u201457 copies and the expression of 20 functional FBXO31 homologs in Brandt's bat. As FBXO31 directs the degradation of MDM2, which is a negative regulator of TP53, we suggest that increased expression of both FBXO31 and TP53 may be related to an enhanced DNA-damage response to genotoxic stress brought on by long lifespans and rapid metabolic rates in bats.
ContributorsSchneider-Utaka, Aika Kunigunda (Author) / Maley, Carlo (Thesis director) / Wilson Sayres, Melissa (Committee member) / Tollis, Marc (Committee member) / School of Life Sciences (Contributor, Contributor) / Barrett, The Honors College (Contributor)
Created2018-12
137618-Thumbnail Image.png
Description
Currently conventional Subtitle D landfills are the primary means of disposing of our waste in the United States. While this method of waste disposal aims at protecting the environment, it does so through the use of liners and caps that effectively freeze the breakdown of waste. Because this method can

Currently conventional Subtitle D landfills are the primary means of disposing of our waste in the United States. While this method of waste disposal aims at protecting the environment, it does so through the use of liners and caps that effectively freeze the breakdown of waste. Because this method can keep landfills active, and thus a potential groundwater threat for over a hundred years, I take an in depth look at the ability of bioreactor landfills to quickly stabilize waste. In the thesis I detail the current state of bioreactor landfill technologies, assessing the pros and cons of anaerobic and aerobic bioreactor technologies. Finally, with an industrial perspective, I conclude that moving on to bioreactor landfills as an alternative isn't as simple as it may first appear, and that it is a contextually specific solution that must be further refined before replacing current landfills.
ContributorsWhitten, George Avery (Author) / Kavazanjian, Edward (Thesis director) / Allenby, Braden (Committee member) / Houston, Sandra (Committee member) / Civil, Environmental and Sustainable Engineering Programs (Contributor) / Barrett, The Honors College (Contributor)
Created2013-05
Description

Our bodies are constantly fighting off viral pathogens both with our external barriers such as skin as well as internally through the immune system. Mucin genes specifically Muc5AC and Muc5B help assist in this process by activating both bacterial and mucus pathogenesis. Their gene expression is correlated with temperature meaning

Our bodies are constantly fighting off viral pathogens both with our external barriers such as skin as well as internally through the immune system. Mucin genes specifically Muc5AC and Muc5B help assist in this process by activating both bacterial and mucus pathogenesis. Their gene expression is correlated with temperature meaning that in warmer temperatures they have decreased expression. Developing a better understanding of their functionality as well as their expression can help species that are in danger of becoming extinct.

ContributorsWang, Dylan (Author) / Kusumi, Kenro (Thesis director) / Benson, Derek (Committee member) / Barrett, The Honors College (Contributor) / School of Life Sciences (Contributor) / Dean, W.P. Carey School of Business (Contributor) / Department of Finance (Contributor)
Created2023-05
Description

Oxymonas is a genus of Oxymonad protist found in the hindgut of drywood termites (family Kalotermitidae). Many genera of drywood termites are invasive pests globally. The hindgut microbiome of Cryptotermes brevis, the West Indian drywood termite, has not been described in detail, and only one published sequence exists of Oxymonas

Oxymonas is a genus of Oxymonad protist found in the hindgut of drywood termites (family Kalotermitidae). Many genera of drywood termites are invasive pests globally. The hindgut microbiome of Cryptotermes brevis, the West Indian drywood termite, has not been described in detail, and only one published sequence exists of Oxymonas from C. brevis. This study aims to analyze Oxymonas sequences in C. brevis from whole gut genetic material, as well as to dissect its place in phylogenetic trees of Oxymonas and how it fits into specific and evolutionary patterns. To amplify the 18S rRNA gene Oxymonas from C. brevis, the MasterPure DNA extraction kit was used, followed by PCR amplification, followed by agarose gel electrophoresis, followed by purification of the resulting gel bands, followed by ligation/transformation on to an LB agar plate, followed by cloning the resulting bacterial colonies, and topped off by colony screening. The colony screening PCR products were then sequenced in the Genomics Core, assembled in Geneious, aligned and trimmed into a phylogenetic tree, along with several long-read amplicon sequences from Oxymonas in other drywood termites. All whole gut sequences and one amplicon from C. brevis formed a single clade, sharing an ancestor with a sister clade of Oxymonas sp. from C. cavifrons and Procryptotermes leewardensis, but the other long-read fell into its own clade in a different spot on the tree. It can be conjectured that the latter sequence was contaminated and that the C. brevis clones are a monophyletic group, a notion further corroborated by a distantly related clade featuring sequences from Cryptotermes dudleyi, which in turn has a sister taxon of Oxymonas clones from C. cavifrons and P. leewardensis, pointing toward a different kind of co-diversification of the hosts and symbionts rather than cospeciation.

ContributorsSharma, Noah (Author) / Gile, Gillian (Thesis director) / Shaffer, Zachary (Committee member) / Coots, Nicole (Committee member) / Barrett, The Honors College (Contributor) / School of Life Sciences (Contributor)
Created2023-05
Description

The symbiosis between termites and their parabasalid hindgut protists centers around the wood digestion that is needed for both species to acquire the nutrients from wood. One of the important carbohydrate-active proteins required for the wood breakdown are glycoside hydrolase (GH) families. Previous studies have looked at the phylogeny of

The symbiosis between termites and their parabasalid hindgut protists centers around the wood digestion that is needed for both species to acquire the nutrients from wood. One of the important carbohydrate-active proteins required for the wood breakdown are glycoside hydrolase (GH) families. Previous studies have looked at the phylogeny of some of these protein families from a termite whole gut transcriptome or in a different context than lignocellulose digestion. In this study, we attempt to understand the function and evolution of these GH families in the context of protist evolution by using protist single cell transcriptomes. 14 families of interest were chosen to create phylogenetic trees: GH2, GH3, GH5, GH7, GH8, GH9, GH10, GH11, GH26, GH43, GH45, GH55, GH67, GH95 for their interesting expressions across different protists such as being present in all protists or being present in only termite-associated protists. The dbCAN2 (automated Carbohydrate-active enzyme ANnotation) program was used to find GH families in each of the protist single cell transcriptomes and additional characterized sequences registered on the National Center for Biotechnology Information to create phylogenetic trees for each of the GH families of interest. Results show that many of the GH families expressed in protists were acquired through horizontal gene transfer from fungi and bacteria. Additionally, comparison to the parabasalid phylogeny indicates most GH families evolved independently from the protists. Based on the pattern of expression of these GH families throughout different protist orders, conclusions can be made about whether the specific family was vertically or horizontally acquired in the termite symbionts.

ContributorsJahan, Israa (Author) / Gile, Gillian (Thesis director) / Wang, Xuan (Committee member) / Swichtenberg, Kali (Committee member) / Barrett, The Honors College (Contributor) / School of Life Sciences (Contributor) / Department of Psychology (Contributor)
Created2023-05
171930-Thumbnail Image.png
Description
Environmentally harmful byproducts from solid waste’s decomposition, including methane (CH4) emissions, are managed through standardized landfill engineering and gas-capture mechanisms. Yet only a limited number of studies have analyzed the development and composition of Bacteria and Archaea involved in CH4 production from landfills. The objectives of this research were to

Environmentally harmful byproducts from solid waste’s decomposition, including methane (CH4) emissions, are managed through standardized landfill engineering and gas-capture mechanisms. Yet only a limited number of studies have analyzed the development and composition of Bacteria and Archaea involved in CH4 production from landfills. The objectives of this research were to compare microbiomes and bioactivity from CH4-producing communities in contrasting spatial areas of arid landfills and to tests a new technology to biostimulate CH4 production (methanogenesis) from solid waste under dynamic environmental conditions controlled in the laboratory. My hypothesis was that the diversity and abundance of methanogenic Archaea in municipal solid waste (MSW), or its leachate, play an important role on CH4 production partially attributed to the group’s wide hydrogen (H2) consumption capabilities. I tested this hypothesis by conducting complementary field observations and laboratory experiments. I describe niches of methanogenic Archaea in MSW leachate across defined areas within a single landfill, while demonstrating functional H2-dependent activity. To alleviate limited H2 bioavailability encountered in-situ, I present biostimulant feasibility and proof-of-concepts studies through the amendment of zero valent metals (ZVMs). My results demonstrate that older-aged MSW was minimally biostimulated for greater CH4 production relative to a control when exposed to iron (Fe0) or manganese (Mn0), due to highly discernable traits of soluble carbon, nitrogen, and unidentified fluorophores found in water extracts between young and old aged, starting MSW. Acetate and inhibitory H2 partial pressures accumulated in microcosms containing old-aged MSW. In a final experiment, repeated amendments of ZVMs to MSW in a 600 day mesocosm experiment mediated significantly higher CH4 concentrations and yields during the first of three ZVM injections. Fe0 and Mn0 experimental treatments at mesocosm-scale also highlighted accelerated development of seemingly important, but elusive Archaea including Methanobacteriaceae, a methane-producing family that is found in diverse environments. Also, prokaryotic classes including Candidatus Bathyarchaeota, an uncultured group commonly found in carbon-rich ecosystems, and Clostridia; All three taxa I identified as highly predictive in the time-dependent progression of MSW decomposition. Altogether, my experiments demonstrate the importance of H2 bioavailability on CH4 production and the consistent development of Methanobacteriaceae in productive MSW microbiomes.
ContributorsReynolds, Mark Christian (Author) / Cadillo-Quiroz, Hinsby (Thesis advisor) / Krajmalnik-Brown, Rosa (Thesis advisor) / Wang, Xuan (Committee member) / Kavazanjian, Edward (Committee member) / Arizona State University (Publisher)
Created2022
Description
Cancer is a problem of multicellularity, making it a problem across all species. This pervasiveness has led to much research into the defense and the pathology of the disease. Previously, studies have been limited in sample size, taxonomic breadth, and comparative methods to explain and understand the data available. Here,

Cancer is a problem of multicellularity, making it a problem across all species. This pervasiveness has led to much research into the defense and the pathology of the disease. Previously, studies have been limited in sample size, taxonomic breadth, and comparative methods to explain and understand the data available. Here, we have access to life history and cancer risk data of 17,563 individuals for 327 species, spanning across three monophyletic clades: Amphibians, Sauropsids, and Mammals. Comparative biology’s approach to cross-species cancer prevalence is crucial to the identification of species that are uniquely resistant to cancer as well as stratifying risk across a phylogeny based on the life history framework. Using the life history framework, alongside a multitude of life history data, was able to find that neoplasia prevalence increases with adult weight and longevity, but decreases with gestation time. It was also discovered that malignancy prevalence decreases with gestation time. Gestation and adult weight are also both significant predictors of neoplasia and malignancy prevalence when controlling for the other. On an evolutionary scale, cancer risk appears to be best described by sudden shifts in cancer prevalence followed by stabilizing selection of that trait. The understanding of increases and decreases of cancer risk across species could create better insight on human’s own cancer risk, as well as disease prevention in humans.
ContributorsMellon, Walker (Author) / Maley, Carlo (Thesis director) / Compton, Zachary (Committee member) / Mallo, Diego (Committee member) / Barrett, The Honors College (Contributor) / Department of Information Systems (Contributor) / Department of Economics (Contributor)
Created2022-12
Description
With uses in fields such as medicine, agriculture, and biotechnology, halogenases are useful enzymes in nature which add or substitute halogens onto other molecules. By doing so, they become necessary for biosynthesis and cross-coupling reactions. Halogenases can be classified by three main types of mechanisms: nucleophilic, radical, and electrophilic. From

With uses in fields such as medicine, agriculture, and biotechnology, halogenases are useful enzymes in nature which add or substitute halogens onto other molecules. By doing so, they become necessary for biosynthesis and cross-coupling reactions. Halogenases can be classified by three main types of mechanisms: nucleophilic, radical, and electrophilic. From there, they can be further broken down by the halogen involved, the substrate needed, other proteins used, or molecules generated. A notable example is PrnA which is a tryptophan-7 halogenase that falls under the flavin-dependent definition with an electrophilic mechanism. Historically, research on these enzymes was slow until the use of bioinformatics rapidly accelerated discoveries to the point where halogenases like VirX1 can be identified from viruses. By reviewing the literature available on halogenase since their first analysis, a better understanding of their functions can be obtained. Also, with the application of bioinformatics, a phylogenetic analysis on the halogenases present in cyanobacteria can be conducted and compared.
ContributorsUsmani, Hibah (Author) / Zhu, Qiyun (Thesis director) / Neilan, Brett (Committee member) / Barrett, The Honors College (Contributor) / School of Mathematical and Statistical Sciences (Contributor) / School of Life Sciences (Contributor)
Created2024-05