Matching Items (3)
Filtering by

Clear all filters

151543-Thumbnail Image.png
Description
The numerical climate models have provided scientists, policy makers and the general public, crucial information for climate projections since mid-20th century. An international effort to compare and validate the simulations of all major climate models is organized by the Coupled Model Intercomparison Project (CMIP), which has gone through several phases

The numerical climate models have provided scientists, policy makers and the general public, crucial information for climate projections since mid-20th century. An international effort to compare and validate the simulations of all major climate models is organized by the Coupled Model Intercomparison Project (CMIP), which has gone through several phases since 1995 with CMIP5 being the state of the art. In parallel, an organized effort to consolidate all observational data in the past century culminates in the creation of several "reanalysis" datasets that are considered the closest representation of the true observation. This study compared the climate variability and trend in the climate model simulations and observations on the timescales ranging from interannual to centennial. The analysis focused on the dynamic climate quantity of zonal-mean zonal wind and global atmospheric angular momentum (AAM), and incorporated multiple datasets from reanalysis and the most recent CMIP3 and CMIP5 archives. For the observation, the validation of AAM by the length-of-day (LOD) and the intercomparison of AAM revealed a good agreement among reanalyses on the interannual and the decadal-to-interdecadal timescales, respectively. But the most significant discrepancies among them are in the long-term mean and long-term trend. For the simulations, the CMIP5 models produced a significantly smaller bias and a narrower ensemble spread of the climatology and trend in the 20th century for AAM compared to CMIP3, while CMIP3 and CMIP5 simulations consistently produced a positive trend for the 20th and 21st century. Both CMIP3 and CMIP5 models produced a wide range of the magnitudes of decadal and interdecadal variability of wind component of AAM (MR) compared to observation. The ensemble means of CMIP3 and CMIP5 are not statistically distinguishable for either the 20th- or 21st-century runs. The in-house atmospheric general circulation model (AGCM) simulations forced by the sea surface temperature (SST) taken from the CMIP5 simulations as lower boundary conditions were carried out. The zonal wind and MR in the CMIP5 simulations are well simulated in the AGCM simulations. This confirmed SST as an important mediator in regulating the global atmospheric changes due to GHG effect.
ContributorsPaek, Houk (Author) / Huang, Huei-Ping (Thesis advisor) / Adrian, Ronald (Committee member) / Wang, Zhihua (Committee member) / Anderson, James (Committee member) / Herrmann, Marcus (Committee member) / Arizona State University (Publisher)
Created2013
134326-Thumbnail Image.png
Description
Protest has been both a practice of citizenship rights as well as a means of social pressure for change in the context of Mexico City's water system. This paper explores the role that citizen protest plays in the city's response to its water challenges. We use media reports of water

Protest has been both a practice of citizenship rights as well as a means of social pressure for change in the context of Mexico City's water system. This paper explores the role that citizen protest plays in the city's response to its water challenges. We use media reports of water protests to examine where protests happen and the causes associated with them. We analyze this information to illuminate socio-political issues associated with the city's water problems, such as political corruption, gentrification, as well as general power dynamics and lack of transparency between citizens, governments, and the private businesses which interact with them. We use text analysis of newspaper reports to analyze protest events in terms of the primary stimuli of water conflict, the areas within the city more prone to conflict, and the ways in which conflict and protest are used to initiate improved water management and to influence decision making to address water inequities. We found that water scarcity is the primary source of conflict, and that water scarcity is tied to new housing and commercial construction. These new constructions often disrupt water supplies and displace of minority or marginalized groups, which we denote as gentrification. The project demonstrates the intimate ties between inequities in housing and water in urban development. Key words: Conflict, protest, Mexico City, scarcity, new construction
ContributorsFlores, Shalae Alena (Author) / Eakin, Hallie C. (Thesis director) / Baeza-Castro, Andres (Committee member) / Lara-Valencia, Francisco (Committee member) / School of Geographical Sciences and Urban Planning (Contributor) / Barrett, The Honors College (Contributor)
Created2017-05
153721-Thumbnail Image.png
Description
Urbanization, a direct consequence of land use and land cover change, is responsible for significant modification of local to regional scale climates. It is projected that the greatest urban growth of this century will occur in urban areas in the developing world. In addition, there is a significant research ga

Urbanization, a direct consequence of land use and land cover change, is responsible for significant modification of local to regional scale climates. It is projected that the greatest urban growth of this century will occur in urban areas in the developing world. In addition, there is a significant research gap in emerging nations concerning this topic. Thus, this research focuses on the assessment of climate impacts related to urbanization on the largest metropolitan area in Latin America: Mexico City.

Numerical simulations using a state-of-the-science regional climate model are utilized to address a trio of scientifically relevant questions with wide global applicability. The importance of an accurate representation of land use and land cover is first demonstrated through comparison of numerical simulations against observations. Second, the simulated effect of anthropogenic heating is quantified. Lastly, numerical simulations are performed using pre-historic scenarios of land use and land cover to examine and quantify the impact of Mexico City's urban expansion and changes in surface water features on its regional climate.
ContributorsBenson-Lira, Valeria (Author) / Georgescu, Matei (Thesis advisor) / Brazel, Anthony (Committee member) / Vivoni, Enrique (Committee member) / Arizona State University (Publisher)
Created2015