Matching Items (4)
Filtering by

Clear all filters

134670-Thumbnail Image.png
Description
Zeolite thin films and membranes are currently a promising technology for pervaporation, gas separation and water purification. The main drawback with these technologies is that the synthesis is not consistent leading to varied and unreproducible results. The Langmuir-Blodgett technique is a robust method for transferring monolayers of molecules or crystals

Zeolite thin films and membranes are currently a promising technology for pervaporation, gas separation and water purification. The main drawback with these technologies is that the synthesis is not consistent leading to varied and unreproducible results. The Langmuir-Blodgett technique is a robust method for transferring monolayers of molecules or crystals to a solid substrate. By measuring the surface pressure and controlling the area, reliable results can be achieved by transferring monolayers to different solid substrates. It has been shown previously that various types of zeolites can be functionalized and dispersed on the top of water. This is done by using an alcohol to form a hydrophobic coating on the surface of zeolite. The Langmuir-Blodgett can be used to create thin, compact films of zeolites for synthesizing and growing zeolite films. For the first reported time, cubic LTA Zeolites monolayers have been assembled with the Langmuir-Blodgett technique with multiple solvents and different sizes of zeolites. These films were characterized with Scanning Electron Microscopy and Pressure-Area Isotherms generated from the Langmuir-Blodgett. It was found that linoleic acid is a required addition to the zeolite dispersions to protect the mechanical stability during agitation. Without this addition, the LTA zeolites are broken apart and lose their characteristic cubic structure. This effect is discussed and a theory is presented that the interparticle interactions of the long alkane chain of the linoleic acid help reduce the shear stress on the individual zeolite particles, thus preventing them from being broken. The effect of size of the zeolites on the monolayer formation was also discussed. There seemed to be little correlation between the monolayer quality and formation as size was changed. However, to optimize the process, different concentrations and target pressures are needed. Lastly, the effect of the solvent was explored and it was found that there is a different between monolayer formations for different solvents likely due to differing interparticle interactions. Overall, LTA zeolites were successfully fabricated and the important factors to consider are the zeolite size, the solvent, and the amount of surfactant stabilizer added.
ContributorsDopilka, Andrew Michael (Author) / Lind, Mary Laura (Thesis director) / Cay, Pinar (Committee member) / Materials Science and Engineering Program (Contributor) / Chemical Engineering Program (Contributor) / Barrett, The Honors College (Contributor)
Created2016-12
134902-Thumbnail Image.png
Description
Metal-organic frameworks (MOFs) are a new set of porous materials comprised of metals or metal clusters bonded together in a coordination system by organic linkers. They are becoming popular for gas separations due to their abilities to be tailored toward specific applications. Zirconium MOFs in particular are known for their

Metal-organic frameworks (MOFs) are a new set of porous materials comprised of metals or metal clusters bonded together in a coordination system by organic linkers. They are becoming popular for gas separations due to their abilities to be tailored toward specific applications. Zirconium MOFs in particular are known for their high stability under standard temperature and pressure due to the strength of the Zirconium-Oxygen coordination bond. However, the acid modulator needed to ensure long range order of the product also prevents complete linker deprotonation. This leads to a powder product that cannot easily be incorporated into continuous MOF membranes. This study therefore implemented a new bi-phase synthesis technique with a deprotonating agent to achieve intergrowth in UiO-66 membranes. Crystal intergrowth will allow for effective gas separations and future permeation testing. During experimentation, successful intergrown UiO-66 membranes were synthesized and characterized. The degree of intergrowth and crystal orientations varied with changing deprotonating agent concentration, modulator concentration, and ligand:modulator ratios. Further studies will focus on achieving the same results on porous substrates.
ContributorsClose, Emily Charlotte (Author) / Mu, Bin (Thesis director) / Shan, Bohan (Committee member) / Chemical Engineering Program (Contributor) / Barrett, The Honors College (Contributor)
Created2016-12
173391-Thumbnail Image.png
Description

Wilhelm Pfeffer published his book Osmotische Untersuchungen: Studien Zur Zellmechanik (Osmotic Investigations: Studies on Cell Mechanics) in 1877 during his time as a professor of botany at the University of Basel in Basel, Switzerland. Gordon R. Kepner and Eduard J. Stadelmann translated the book into English in 1985. Verlag von

Wilhelm Pfeffer published his book Osmotische Untersuchungen: Studien Zur Zellmechanik (Osmotic Investigations: Studies on Cell Mechanics) in 1877 during his time as a professor of botany at the University of Basel in Basel, Switzerland. Gordon R. Kepner and Eduard J. Stadelmann translated the book into English in 1985. Verlag von Wilhelm Engelmann in Leipzig, Germany, published the original book in German in 1877 and Van Nostrand Reinhold Company in New York, New York, published the English version in 1985. The book focuses on the cell mechanics of osmotic processes to explain why high pressure exists in plant cells. The book also provides one of the earliest detailed descriptions of the Pfeffer Cell, a devise Pfeffer had created to model and study osmosis in plant cells. The model helped Pfeffer propose theories for how osmosis affected metabolism, growth, and development of plant cells.

Created2017-05-09
173434-Thumbnail Image.png
Description

The Pfeffer Zelle (Pfeffer Cell Apparatus), invented by Wilhelm Pfeffer in 1877, measured the minimum pressure needed to prevent a pure solvent from passing into a solution across a semi-permeable membrane, called osmotic pressure. The apparatus provided Pfeffer with a way to quantitatively measure osmotic pressure. Pfeffer devised the apparatus

The Pfeffer Zelle (Pfeffer Cell Apparatus), invented by Wilhelm Pfeffer in 1877, measured the minimum pressure needed to prevent a pure solvent from passing into a solution across a semi-permeable membrane, called osmotic pressure. The apparatus provided Pfeffer with a way to quantitatively measure osmotic pressure. Pfeffer devised the apparatus in the 1870s at the University of Basel in Basel, Switzerland, and he described the Pfeffer Cell Apparatus in his 1877 book Osmotische Untersuchungen: Studien Zur Zellmechanik (Osmotic Investigations: Studies on Cell Mechanics). Pfeffer relied on nineteenth century experiments of Moritz Traube in Germany, who constructed artificial copper ferrocyanide membranes to study osmosis. The apparatus enabled Pfeffer to study osmosis and osmotic pressure as plants grow, and later researchers used it to explain how plants develop.

Created2017-10-24