Matching Items (2)
Filtering by

Clear all filters

134902-Thumbnail Image.png
Description
Metal-organic frameworks (MOFs) are a new set of porous materials comprised of metals or metal clusters bonded together in a coordination system by organic linkers. They are becoming popular for gas separations due to their abilities to be tailored toward specific applications. Zirconium MOFs in particular are known for their

Metal-organic frameworks (MOFs) are a new set of porous materials comprised of metals or metal clusters bonded together in a coordination system by organic linkers. They are becoming popular for gas separations due to their abilities to be tailored toward specific applications. Zirconium MOFs in particular are known for their high stability under standard temperature and pressure due to the strength of the Zirconium-Oxygen coordination bond. However, the acid modulator needed to ensure long range order of the product also prevents complete linker deprotonation. This leads to a powder product that cannot easily be incorporated into continuous MOF membranes. This study therefore implemented a new bi-phase synthesis technique with a deprotonating agent to achieve intergrowth in UiO-66 membranes. Crystal intergrowth will allow for effective gas separations and future permeation testing. During experimentation, successful intergrown UiO-66 membranes were synthesized and characterized. The degree of intergrowth and crystal orientations varied with changing deprotonating agent concentration, modulator concentration, and ligand:modulator ratios. Further studies will focus on achieving the same results on porous substrates.
ContributorsClose, Emily Charlotte (Author) / Mu, Bin (Thesis director) / Shan, Bohan (Committee member) / Chemical Engineering Program (Contributor) / Barrett, The Honors College (Contributor)
Created2016-12
Description

Post-consumer plastic and polymer waste accumulation in recent years continues to become more of a problem. One of the common polymers that has become ubiquitous to modern life is polyethylene terephthalate, a polymer that makes up 6.2% of all polymers produced and only 39% of which is recycled in the

Post-consumer plastic and polymer waste accumulation in recent years continues to become more of a problem. One of the common polymers that has become ubiquitous to modern life is polyethylene terephthalate, a polymer that makes up 6.2% of all polymers produced and only 39% of which is recycled in the US annually.1,5 In this study a new catalyst was for the methanolysis of PET and compared to a common organic base, 1,5,7-triazabicyclo[4.4.0]dec-5-ene (TBD), that has been used in academia and industry for the depolymerization of PET. In this study it was concluded that yttrium (III) acetylacetonate hydrate was a more active catalyst for the methanolysis of PET at 120 °C in comparison to TBD. It was also determined that there is no co-catalytic effect between yttrium (III) acetylacetonate hydrate and TBD when used in combination. The use of manganese (II) acetate tetrahydrate was also explored as a potential catalyst and was found to shown significant reactivity. However, it was concluded that the optimal conditions for PET methanolysis had not been reached and that further research into reaction times as well as co-solvents needs to be conducted. The synthesis of a novel o-phenylenediamine ligand functionalized with a labile phosphine substituent was also explored with the end goal of metalation and implementation in the methanolysis of PET. It has been assumed through nuclear magnetic resonance spectroscopy (NMR) characterization that the N,N’-(1,2-phenylenediamine)bis[3-(diphenylphosphanyl)-propanamide]-borane precursor was successfully synthesized and isolated. The subsequent deprotection of the N,N’-(1,2-phenylenediamine)bis[3-(diphenylphosphanyl)-propanamide]-borane complex was performed but has not been fully characterized. The 31P NMR does indicate a fully deprotected tertiary organophosphine. Through this work a detailed procedure for the ligand precursor has been laid out and developed so that the synthesis may now be scaled up, further characterized, metalated, and used to support catalysis.

ContributorsMarch, Elizabeth (Author) / Trovitch, Ryan (Thesis director) / Long, Timothy (Committee member) / Herckes, Pierre (Committee member) / Barrett, The Honors College (Contributor) / School of Molecular Sciences (Contributor)
Created2023-05