Matching Items (2)
Filtering by

Clear all filters

132500-Thumbnail Image.png
Description
OP50 Esherichia coli is a Gram-negative bacterium with a fast replication rate and can be easily manipulated, making it a model species for many science disciplines. To probe this bacterium’s search strategy, cultures were starved and the cell velocity was probed at various points later in time after perturbing the

OP50 Esherichia coli is a Gram-negative bacterium with a fast replication rate and can be easily manipulated, making it a model species for many science disciplines. To probe this bacterium’s search strategy, cultures were starved and the cell velocity was probed at various points later in time after perturbing the buffer in which the bacteria were located. To start, we added E.coli OP50 filtrate. In yet another experiment filtrate from a Bdellovibrio bacteriovorus (Gram-negative predator) culture was added to monitor the OP50’s differential response to cues from its environment. Using MATLAB code, thousands of E.coli tracks were measured.
ContributorsSanchez, Alec Jesus (Author) / Presse, Steve (Thesis director) / Gile, Gillian (Committee member) / School of Molecular Sciences (Contributor) / Barrett, The Honors College (Contributor)
Created2019-05
166196-Thumbnail Image.png
Description

Bdellovibrio bacteriovorus (BB) is a gram negative predatory bacteria that uses other gram negative bacteria to proliferate non-binarily. Due to the predatory nature of BB researchers have proposed to use it as a potential biocontrol agent against other gram negative bacteria. The in vivo effect of predatory bacteria on a

Bdellovibrio bacteriovorus (BB) is a gram negative predatory bacteria that uses other gram negative bacteria to proliferate non-binarily. Due to the predatory nature of BB researchers have proposed to use it as a potential biocontrol agent against other gram negative bacteria. The in vivo effect of predatory bacteria on a living host lacks thorough investigation. This paper explores BB inside and outside of the C. elegans. BB acts internally by pre- infecting C. elegans with E. coli and then treating the worms with BB. After BB treatment worm survivavbility increased and morbidity decreased. Ex- ternally, BB modulated the environment around the nematode which reduced infection rates and increased nematode lifespan and survivability. Together, the internal and external results suggest BB has the capability to act as a living antibiotic acting topically and internally to reduce infection rates.

ContributorsStambolic, Milena (Author) / Presse, Steve (Thesis director) / Vlcek, Jessi (Committee member) / Barrett, The Honors College (Contributor) / Department of Physics (Contributor) / School of Mathematical and Statistical Sciences (Contributor)
Created2022-05