Matching Items (21)
Filtering by

Clear all filters

150059-Thumbnail Image.png
Description
Dynamic loading is the term used for one way of optimally loading a transformer. Dynamic loading means the utility takes into account the thermal time constant of the transformer along with the cooling mode transitions, loading profile and ambient temperature when determining the time-varying loading capability of a transformer. Knowing

Dynamic loading is the term used for one way of optimally loading a transformer. Dynamic loading means the utility takes into account the thermal time constant of the transformer along with the cooling mode transitions, loading profile and ambient temperature when determining the time-varying loading capability of a transformer. Knowing the maximum dynamic loading rating can increase utilization of the transformer while not reducing life-expectancy, delaying the replacement of the transformer. This document presents the progress on the transformer dynamic loading project sponsored by Salt River Project (SRP). A software application which performs dynamic loading for substation distribution transformers with appropriate transformer thermal models is developed in this project. Two kinds of thermal hottest-spot temperature (HST) and top-oil temperature (TOT) models that will be used in the application--the ASU HST/TOT models and the ANSI models--are presented. Brief validations of the ASU models are presented, showing that the ASU models are accurate in simulating the thermal processes of the transformers. For this production grade application, both the ANSI and the ASU models are built and tested to select the most appropriate models to be used in the dynamic loading calculations. An existing application to build and select the TOT model was used as a starting point for the enhancements developed in this work. These enhancements include:  Adding the ability to develop HST models to the existing application,  Adding metrics to evaluate the models accuracy and selecting which model will be used in dynamic loading calculation  Adding the capability to perform dynamic loading calculations,  Production of a maximum dynamic load profile that the transformer can tolerate without acceleration of the insulation aging,  Provide suitable output (plots and text) for the results of the dynamic loading calculation. Other challenges discussed include: modification to the input data format, data-quality control, cooling mode estimation. Efforts to overcome these challenges are discussed in this work.
ContributorsLiu, Yi (Author) / Tylavksy, Daniel J (Thesis advisor) / Karady, George G. (Committee member) / Ayyanar, Raja (Committee member) / Arizona State University (Publisher)
Created2011
152174-Thumbnail Image.png
Description
Recent trends in the electric power industry have led to more attention to optimal operation of power transformers. In a deregulated environment, optimal operation means minimizing the maintenance and extending the life of this critical and costly equipment for the purpose of maximizing profits. Optimal utilization of a transformer can

Recent trends in the electric power industry have led to more attention to optimal operation of power transformers. In a deregulated environment, optimal operation means minimizing the maintenance and extending the life of this critical and costly equipment for the purpose of maximizing profits. Optimal utilization of a transformer can be achieved through the use of dynamic loading. A benefit of dynamic loading is that it allows better utilization of the transformer capacity, thus increasing the flexibility and reliability of the power system. This document presents the progress on a software application which can estimate the maximum time-varying loading capability of transformers. This information can be used to load devices closer to their limits without exceeding the manufacturer specified operating limits. The maximally efficient dynamic loading of transformers requires a model that can accurately predict both top-oil temperatures (TOTs) and hottest-spot temperatures (HSTs). In the previous work, two kinds of thermal TOT and HST models have been studied and used in the application: the IEEE TOT/HST models and the ASU TOT/HST models. And, several metrics have been applied to evaluate the model acceptability and determine the most appropriate models for using in the dynamic loading calculations. In this work, an investigation to improve the existing transformer thermal models performance is presented. Some factors that may affect the model performance such as improper fan status and the error caused by the poor performance of IEEE models are discussed. Additional methods to determine the reliability of transformer thermal models using metrics such as time constant and the model parameters are also provided. A new production grade application for real-time dynamic loading operating purpose is introduced. This application is developed by using an existing planning application, TTeMP, as a start point, which is designed for the dispatchers and load specialists. To overcome the limitations of TTeMP, the new application can perform dynamic loading under emergency conditions, such as loss-of transformer loading. It also has the capability to determine the emergency rating of the transformers for a real-time estimation.
ContributorsZhang, Ming (Author) / Tylavsky, Daniel J (Thesis advisor) / Ayyanar, Raja (Committee member) / Holbert, Keith E. (Committee member) / Arizona State University (Publisher)
Created2013
151050-Thumbnail Image.png
Description
In the deregulated power system, locational marginal prices are used in transmission engineering predominantly as near real-time pricing signals. This work extends this concept to distribution engineering so that a distribution class locational marginal price might be used for real-time pricing and control of advanced control systems in distribution circuits.

In the deregulated power system, locational marginal prices are used in transmission engineering predominantly as near real-time pricing signals. This work extends this concept to distribution engineering so that a distribution class locational marginal price might be used for real-time pricing and control of advanced control systems in distribution circuits. A formulation for the distribution locational marginal price signal is presented that is based on power flow sensitivities in a distribution system. A Jacobian-based sensitivity analysis has been developed for application in the distribution pricing method. Increasing deployment of distributed energy sources is being seen at the distribution level and this trend is expected to continue. To facilitate an optimal use of the distributed infrastructure, the control of the energy demand on a feeder node in the distribution system has been formulated as a multiobjective optimization problem and a solution algorithm has been developed. In multiobjective problems the Pareto optimality criterion is generally applied, and commonly used solution algorithms are decision-based and heuristic. In contrast, a mathematically-robust technique called normal boundary intersection has been modeled for use in this work, and the control variable is solved via separable programming. The Roy Billinton Test System (RBTS) has predominantly been used to demonstrate the application of the formulation in distribution system control. A parallel processing environment has been used to replicate the distributed nature of controls at many points in the distribution system. Interactions between the real-time prices in a distribution feeder and the nodal prices at the aggregated load bus have been investigated. The application of the formulations in an islanded operating condition has also been demonstrated. The DLMP formulation has been validated using the test bed systems and a practical framework for its application in distribution engineering has been presented. The multiobjective optimization yields excellent results and is found to be robust for finer time resolutions. The work shown in this report is applicable to, and has been researched under the aegis of the Future Renewable Electric Energy Delivery and Management (FREEDM) center, which is a generation III National Science Foundation engineering research center headquartered at North Carolina State University.
ContributorsRanganathan Sathyanarayana, Bharadwaj (Author) / Heydt, Gerald T (Thesis advisor) / Vittal, Vijay (Committee member) / Ayyanar, Raja (Committee member) / Zhang, Junshan (Committee member) / Arizona State University (Publisher)
Created2012
151213-Thumbnail Image.png
Description
The reliability assessment of future distribution networks is an important issue in power engineering for both utilities and customers. This is due to the increasing demand for more reliable service with less interruption frequency and duration. This research consists of two main parts related to the evaluation of the future

The reliability assessment of future distribution networks is an important issue in power engineering for both utilities and customers. This is due to the increasing demand for more reliable service with less interruption frequency and duration. This research consists of two main parts related to the evaluation of the future distribution system reliability. An innovative algorithm named the encoded Markov cut set (EMCS) is proposed to evaluate the reliability of the networked power distribution system. The proposed algorithm is based on the identification of circuit minimal tie sets using the concept of Petri nets. Prime number encoding and unique prime factorization are then utilized to add more flexibility in communicating between the systems states, and to classify the states as tie sets, cut sets, or minimal cut sets. Different reduction and truncation techniques are proposed to reduce the size of the state space. The Markov model is used to compute the availability, mean time to failure, and failure frequency of the network. A well-known Test Bed is used to illustrate the analysis (the Roy Billinton test system (RBTS)), and different load and system reliability indices are calculated. The method shown is algorithmic and appears suitable for off-line comparison of alternative secondary distribution system designs on the basis of their reliability. The second part assesses the impact of the conventional and renewable distributed generation (DG) on the reliability of the future distribution system. This takes into account the variability of the power output of the renewable DG, such as wind and solar DGs, and the chronological nature of the load demand. The stochastic nature of the renewable resources and its influence on the reliability of the system are modeled and studied by computing the adequacy transition rate. Then, an integrated Markov model that incorporates the DG adequacy transition rate, DG mechanical failure, and starting and switching probability is proposed and utilized to give accurate results for the DG reliability impact. The main focus in this research is the conventional, solar, and wind DG units. However, the technique used appears to be applicable to any renewable energy source.
ContributorsAlmuhaini, Mohammad (Author) / Heydt, Gerald (Thesis advisor) / Ayyanar, Raja (Committee member) / Gel, Esma (Committee member) / Tylavsky, Daniel (Committee member) / Arizona State University (Publisher)
Created2012
171673-Thumbnail Image.png
Description
The performance of voltage source inverter (VSI) in terms of output waveform quality, conversion efficiency and common mode noise depends greatly on the pulse width modulation (PWM) method. In this work, a low-loss space vector PWM i.e., 240°-clamped space vector PWM (240CPWM) is proposed to improve the performance of VSIs

The performance of voltage source inverter (VSI) in terms of output waveform quality, conversion efficiency and common mode noise depends greatly on the pulse width modulation (PWM) method. In this work, a low-loss space vector PWM i.e., 240°-clamped space vector PWM (240CPWM) is proposed to improve the performance of VSIs in electric/hybrid electric vehicles (EV/HEVs) and grid connected photovoltaic (PV) systems. The salient features of 240CPWM include 240° clamping of each phase pole to positive or negative DC bus in a fundamental cycle ensuring that switching losses are reduced by a factor of seven as compared to conventional space vector PWM (CSVPWM) at unity power factor. Zero states are completely eliminated and only two nearest active states are used ensuring that there is no penalty in terms of total harmonic distortion (THD) in line current. The THD of the line current is analyzed using the notion of stator flux ripple and compared with conventional and discontinuous PWM method. Discontinuous PWM methods achieve switching loss reduction at the expense of higher THD while 240CPWM achieves a much greater loss reduction without impacting the THD. The analysis and performance of 240CPWM are validated on a 10 kW two-stage experimental prototype. Common mode voltage (CMV) and leakage current characteristics of 240CPWM are analyzed in detail. It is shown analytically that 240CPWM reduces the CMV and leakage current as compared to other PWM methods while simultaneously reducing the switching loss and THD. Experimental results from a 10-kW hardware prototype conform to the analytical discussions and validate the superior performance of 240CPWM. 240CPWM requires a six-pulse dynamic DC link voltage that introduces low frequency harmonics in DC input current and/or AC line currents that can affect maximum power point tracking, battery life or THD in line current. Four topologies have been proposed to minimize the low frequency harmonics in input and line currents in grid-connected PV system with 240CPWM. In order to achieve further benefits in terms of THD and device stress reduction, 240CPWM is extended to three-level inverters. The performance metrics such as THD and switching loss for 240CPWM are analyzed in three-level inverter.
ContributorsQamar, Hafsa (Author) / Ayyanar, Raja (Thesis advisor) / Yu, Hongbin (Committee member) / Lei, Qin (Committee member) / Weng, Yang (Committee member) / Arizona State University (Publisher)
Created2022
154055-Thumbnail Image.png
Description
The electromagnetic fields near power lines that may produce adverse effects on humans are of increasing interest in a variety of situations, thus making it worthwhile to develop general-purpose software that estimates both the electric and magnetic fields accurately. This study deals with the simulations of the electric and magnetic

The electromagnetic fields near power lines that may produce adverse effects on humans are of increasing interest in a variety of situations, thus making it worthwhile to develop general-purpose software that estimates both the electric and magnetic fields accurately. This study deals with the simulations of the electric and magnetic fields near high-voltage power lines for the triangular, horizontal and vertical conductor arrangements under both balanced and unbalanced conditions.

For all three conductor arrangements, the shapes of the electric field distribution curves are different with the vertical arrangement best for minimizing right of way consideration, while the shapes of the magnetic field distributions curves are similar. Except for the horizontal arrangement, the maximum electric field magnitudes with shield conductors are larger than those without shield conductors. Among the three different arrangements, the maximum field value of the vertical arrangement is most vulnerable to the unbalanced conditions.

For both the electric and magnetic fields, increasing the heights of phase conductors gradually results in diminishing return in terms of the field reduction. In this work, both the maximum electric field magnitudes and the maximum magnetic field magnitudes produced by 500 kV power lines at 1 m height from the ground are all within the permissible exposure levels for the general public. At last, the dynamic trajectories of both fields with time are simulated and interpreted, with each field represented by a vector rotating in a plane describing an ellipse, where the vector values can be compared to high-speed vector measurements.
ContributorsXiao, Lei (Author) / Holbert, Keith E. (Thesis advisor) / Karady, George G. (Committee member) / Ayyanar, Raja (Committee member) / Arizona State University (Publisher)
Created2015
154851-Thumbnail Image.png
Description
This dissertation presents innovative techniques to develop performance-based models and complete transient models of induction motor drive systems with vector controls in electro-magnetic transient (EMT) and positive sequence transient stability (PSTS) simulation programs. The performance-based model is implemented by obtaining the characteristic transfer functions of perturbed active and reactive power

This dissertation presents innovative techniques to develop performance-based models and complete transient models of induction motor drive systems with vector controls in electro-magnetic transient (EMT) and positive sequence transient stability (PSTS) simulation programs. The performance-based model is implemented by obtaining the characteristic transfer functions of perturbed active and reactive power consumptions with respect to frequency and voltage perturbations. This level of linearized performance-based model is suitable for the investigation of the damping of small-magnitude low-frequency oscillations. The complete transient model is proposed by decomposing the motor, converter and control models into d-q axes components and developing a compatible electrical interface to the positive-sequence network in the PSTS simulators. The complete transient drive model is primarily used to examine the system response subject to transient voltage depression considering increasing penetration of converter-driven motor loads.

For developing the performance-based model, modulations are performed on the supply side of the full drive system to procure magnitude and phase responses of active and reactive powers with respect to the supply voltage and frequency for a range of discrete frequency points. The prediction error minimization (PEM) technique is utilized to generate the curve-fitted transfer functions and corresponding bode plots. For developing the complete drive model in the PSTS simulation program, a positive-sequence voltage source is defined properly as the interface of the model to the external system. The dc-link of the drive converter is implemented by employing the average model of the PWM converter, and is utilized to integrate the line-side rectifier and machine-side inverter.

Numerical simulation is then conducted on sample test systems, synthesized with suitable characteristics to examine performance of the developed models. The simulation results reveal that with growing amount of drive loads being distributed in the system, the small-signal stability of the system is improved in terms of the desirable damping effects on the low-frequency system oscillations of voltage and frequency. The transient stability of the system is also enhanced with regard to the stable active power and reactive power controls of the loads, and the appropriate VAr support capability provided by the drive loads during a contingency.
ContributorsLiu, Yuan (Author) / Vittal, Vijay (Thesis advisor) / Undrill, John (Committee member) / Ayyanar, Raja (Committee member) / Qin, Jiangchao (Committee member) / Arizona State University (Publisher)
Created2016
153925-Thumbnail Image.png
Description
This thesis provides a cost to benefit analysis of the proposed next generation of distribution systems- the Future Renewable Electric Energy Distribution Management (FREEDM) system. With the increasing penetration of renewable energy sources onto the grid, it becomes necessary to have an infrastructure that allows for easy integration of these

This thesis provides a cost to benefit analysis of the proposed next generation of distribution systems- the Future Renewable Electric Energy Distribution Management (FREEDM) system. With the increasing penetration of renewable energy sources onto the grid, it becomes necessary to have an infrastructure that allows for easy integration of these resources coupled with features like enhanced reliability of the system and fast pro-tection from faults. The Solid State Transformer (SST) and the Fault Isolation Device (FID) make for the core of the FREEDM system and have huge investment costs.

Some key features of the FREEDM system include improved power flow control, compact design and unity power factor operation. Customers may observe a reduction in the electricity bill by a certain fraction for using renewable sources of generation. There is also a possibility of huge subsidies given to encourage use of renewable energy. This thesis is an attempt to quantify the benefits offered by the FREEDM system in monetary terms and to calculate the time in years required to gain a return on investments made. The elevated cost of FIDs needs to be justified by the advantages they offer. The result of different rates of interest and how they influence the payback period is also studied. The payback periods calculated are observed for viability. A comparison is made between the active power losses on a certain distribution feeder that makes use of distribution level magnetic transformers versus one that makes use of SSTs. The reduction in the annual active power losses in the case of the feeder using SSTs is translated onto annual savings in terms of cost when compared to the conventional case with magnetic transformers. Since the FREEDM system encourages operation at unity power factor, the need for installing capacitor banks for improving the power factor is eliminated and this re-flects in savings in terms of cost. The FREEDM system offers enhanced reliability when compared to a conventional system. The payback periods observed support the concept of introducing the FREEDM system.
ContributorsRaman, Apurva (Author) / Heydt, Gerald (Thesis advisor) / Karady, George G. (Committee member) / Ayyanar, Raja (Committee member) / Arizona State University (Publisher)
Created2015
154542-Thumbnail Image.png
Description
Two significant trends of recent power system evolution are: (1) increasing installa-tion of dynamic loads and distributed generation resources in distribution systems; (2) large-scale renewable energy integration at the transmission system level. A majority of these devices interface with power systems through power electronic converters. However, existing transient stability (TS)

Two significant trends of recent power system evolution are: (1) increasing installa-tion of dynamic loads and distributed generation resources in distribution systems; (2) large-scale renewable energy integration at the transmission system level. A majority of these devices interface with power systems through power electronic converters. However, existing transient stability (TS) simulators are inadequate to represent the dynamic behavior of these devices accurately. On the other hand, simulating a large system using an electromagnetic transient (EMT) simulator is computationally impractical. EMT-TS hybrid simulation approach is an alternative to address these challenges. Furthermore, to thoroughly analyze the increased interactions among the transmission and distribution systems, an integrated modeling and simulation approach is essential.

The thesis is divided into three parts. The first part focuses on an improved hybrid simulation approach and software development. Compared to the previous work, the pro-posed approach has three salient features: three-sequence TS simulation algorithm, three-phase/three-sequence network equivalencing and flexible switching of the serial and par-allel interaction protocols.

The second part of the thesis concentrates on the applications of the hybrid simula-tion tool. The developed platform is first applied to conduct a detailed fault-induced de-layed voltage recovery (FIDVR) study on the Western Electricity Coordinating Council (WECC) system. This study uncovers that after a normally cleared single line to ground fault at the transmission system could cause air conditioner motors to stall in the distribu-tion systems, and the motor stalling could further propagate to an unfaulted phase under certain conditions. The developed tool is also applied to simulate power systems inter-faced with HVDC systems, including classical HVDC and the new generation voltage source converter (VSC)-HVDC system.

The third part centers on the development of integrated transmission and distribution system simulation and an advanced hybrid simulation algorithm with a capability of switching from hybrid simulation mode to TS simulation. Firstly, a modeling framework suitable for integrated transmission and distribution systems is proposed. Secondly, a power flow algorithm and a diakoptics based dynamic simulation algorithm for the integrated transmission and distribution system are developed. Lastly, the EMT-TS hybrid simulation algorithm is combined with the diakoptics based dynamic simulation algorithm to realize flexible simulation mode switching to increase the simulation efficiency.
ContributorsHuang, Qiuhua (Author) / Vittal, Vijay (Thesis advisor) / Undrill, John M. (Committee member) / Heydt, Gerald T. (Committee member) / Ayyanar, Raja (Committee member) / Arizona State University (Publisher)
Created2016
154495-Thumbnail Image.png
Description
Present distribution infrastructure is designed mainly for uni-directional power flow with well-controlled generation. An increase in the inverter-interfaced photovoltaic (PV) systems requires a thorough re-examination of the design, operation, protection and control of distribution systems. In order to understand the impact of high penetration of PV generation, this work conducts

Present distribution infrastructure is designed mainly for uni-directional power flow with well-controlled generation. An increase in the inverter-interfaced photovoltaic (PV) systems requires a thorough re-examination of the design, operation, protection and control of distribution systems. In order to understand the impact of high penetration of PV generation, this work conducts an automated and detailed modeling of a power distribution system. The simulation results of the modeled distribution feeder have been verified with the field measurements.

Based on the feeder model, this work studies the impact of the PV systems on voltage profiles under various scenarios, including reallocation of the PV systems, reactive power support from the PV inverters, and settings of the load-tap changing transformers in coordination with the PV penetration. Design recommendations have been made based on the simulation results to improve the voltage profiles in the feeder studied.

To carry out dynamic studies related to high penetration of PV systems, this work proposes a differential algebraic equation (DAE) based dynamic modeling and analysis method. Different controllers including inverter current controllers, anti-islanding controllers and droop controllers, are designed and tested in large systems. The method extends the capability of the distribution system analysis tools, to help conduct dynamic analyses in large unbalanced distribution systems.

Another main contribution of this work is related to the investigation of the PV impacts on the feeder protection coordination. Various protection coordination types, including fuse-fuse, recloser-fuse, relay-fuse and relay-recloser have been studied. The analyses provide a better understanding of the relay and recloser settings under different configurations of the PV interconnection transformers, PV penetration levels, and fault types.

A decision tree and fuzzy logic based fault location identification process has also been proposed in this work. The process is composed of the off-line training of the decision tree, and the on-line analysis of the fault events. Fault current contribution from the PV systems, as well as the variation of the fault resistance have been taken into consideration. Two actual fault cases with the event data recorded were used to examine the effectiveness of the fault identification process.
ContributorsTang, Yingying (Author) / Ayyanar, Raja (Thesis advisor) / Karady, George G. (Committee member) / Heydt, Gerald (Committee member) / Vittal, Vijay (Committee member) / Arizona State University (Publisher)
Created2016