Matching Items (4)
136258-Thumbnail Image.png
Description
Physicians generally agree that immunizations save lives, but parents are starting to opt out of vaccinations for their children at alarmingly high levels. This has caused a debate. Some feel that full immunization coverage is essential to this country's future. Others are choosing alternative medicines and taking their chances with

Physicians generally agree that immunizations save lives, but parents are starting to opt out of vaccinations for their children at alarmingly high levels. This has caused a debate. Some feel that full immunization coverage is essential to this country's future. Others are choosing alternative medicines and taking their chances with deadly diseases. I first became truly aware of the vaccine debate when my baby cousin, Jacob, passed away in 2002. He was 1 years old. Jacob contracted seizures soon after receiving the routine MMR vaccine. Doctors signed papers contributing his death to a severe reaction to the MMR vaccine, and my aunt and uncle were given a $250,000 settlement for their pain and suffering. My family has been involved in the vaccine world for nearly 15 years, and it is this involvement that drove me to want produce a documentary about immunizations. To view the documentary visit: https://www.youtube.com/watch?v=ZqW7fEntc1A
Created2015-05
136052-Thumbnail Image.png
Description
Abstract Development of a Vaccine for Immunization Against Smallpox and Anthrax Jason Maurice Cameron Biological weapons are often considered to be the most dangerous weapons of mass destruction because of there potential to infect huge numbers of people, who may then in turn infect others who were not even present

Abstract Development of a Vaccine for Immunization Against Smallpox and Anthrax Jason Maurice Cameron Biological weapons are often considered to be the most dangerous weapons of mass destruction because of there potential to infect huge numbers of people, who may then in turn infect others who were not even present at the point of initial impact. Among the most feared biological weapons are those that contain smallpox and anthrax because of these diseases' high rates of both infection and death. For this reason, the development of a vaccine that immunizes the receivers against both smallpox and anthrax would be great progress. This study seeks to develop such a vaccine by constructing a recombination plasmid that will introduce new genes that combat anthrax into the strain of vaccinia virus (VV), the virus used to vaccinate against smallpox. This study includes a highly detailed analysis of the various processes used to attempt this recombination and proposes plans further research into the subject.
ContributorsCameron, Jason (Author) / Stout, Valerie (Thesis director) / Jacobs, Bert (Committee member) / Hogan, Genevieve (Committee member) / Barrett, The Honors College (Contributor)
Created2003-05
134623-Thumbnail Image.png
Description
Structure is a critical component in drug development. This project supports antibody- facilitated structure determination for the following eleven membrane proteins: the human histamine and dopamine G protein-coupled receptors (HRH4 and DRD2) involved in a wide variety of pathologies such as allergies, inflammation, asthma, pain along with Parkinson's and schizophrenia

Structure is a critical component in drug development. This project supports antibody- facilitated structure determination for the following eleven membrane proteins: the human histamine and dopamine G protein-coupled receptors (HRH4 and DRD2) involved in a wide variety of pathologies such as allergies, inflammation, asthma, pain along with Parkinson's and schizophrenia respectively, the human cystic fibrosis transmembrane conductance regulator (CFTR), the human NaV1.8 voltage-gated sodium ion channel, the human TPC2 two-pore channel, the SARS virus proteins 3a, E and M, the MERS virus protein E and M, and the malarial chloroquine resistance transporter (PfCRT). Serum antibodies against these proteins were generated by genetic immunization, and both in vitro and in vivo expressed membrane proteins were created to characterize the serum antibodies. Plasmid clones were generated for genetic immunization, in vitro protein expression, and in vivo expression (HEK293T transfection). Serum antibodies were generated by genetic immunization of mice by gene gun. Genetic immunization promotes an immune response that allows for the generation of antibodies in the absence of purified protein. In vitro expression was accomplished through the novel technique: in vitro translation with hydrophobic magnetic beads (IVT-HMB). Transfections were performed using the HEK293T cell line to express the protein in vivo. The generated protein was then used in gel electrophoresis and silver stain and/or Western blot analyses to identify and visualize the proteins. These expressed proteins will allow for forthcoming characterization of the generated antibodies. The resulting antibodies will in turn enable structure determination of these important membrane proteins by co-crystallization.
ContributorsDrotar, Beniamin (Author) / Fromme, Petra (Thesis director) / Hansen, Debra T. (Committee member) / School of Molecular Sciences (Contributor) / Barrett, The Honors College (Contributor)
Created2017-05
132269-Thumbnail Image.png
Description
This thesis discusses the complex situation involved in a person’s choice or means to vaccinate
themselves as well as their children. Included is a brief history on vaccines, a section describing
their mechanism of action, as well as information on how the vaccines work within our bodies.
The focus will then turn to

This thesis discusses the complex situation involved in a person’s choice or means to vaccinate
themselves as well as their children. Included is a brief history on vaccines, a section describing
their mechanism of action, as well as information on how the vaccines work within our bodies.
The focus will then turn to the patient’s choice on whether or not to vaccinate themselves or their
child, including factors such as socioeconomic status, education level and their location. Within
this paper are the views of anti-vaccinators, as well as the views of pro-vaccinators and
suggestions on how to reeducate the public. I conclude that the AFIX model is of particular value
in public education: This involves Assessment of immunization coverage, Feedback in
informing providers of their performance, Incentives to help keep them motivated, and eXchange
of information which can be combined with incentives. While the AFIX model has focused on
doctors and nurses in the past, I conclude this model would be most effectively employed with
pharmacists, who see patients more routinely and often have higher levels of trust among the
general public.
ContributorsBernal-Fung, Yasmin (Author) / Martin, Thomas (Thesis director) / Morgan, Lawrence (Committee member) / School of Life Sciences (Contributor) / College of Integrative Sciences and Arts (Contributor) / Barrett, The Honors College (Contributor)
Created2019-05