Matching Items (2)
Filtering by

Clear all filters

149976-Thumbnail Image.png
Description
The majority of chronic myeloid leukemia (CML) and some of acute lymphocytic leukemia (ALL) cases are associated with possessing the BCR-Abl fusion protein from an oncogenic translocation, resulting in a constantly active form of Abl and rapid proliferation. CML and ALL cells that possess the BCR-Abl fusion protein are known

The majority of chronic myeloid leukemia (CML) and some of acute lymphocytic leukemia (ALL) cases are associated with possessing the BCR-Abl fusion protein from an oncogenic translocation, resulting in a constantly active form of Abl and rapid proliferation. CML and ALL cells that possess the BCR-Abl fusion protein are known as Philadelphia chromosome positive (Ph+). Currently, Imatinib (selective Abl inhibitor) is used as therapy against CML and ALL. However, some patients may have malignancies which show resistance to Imatinib. Previous work displays that the transformation of progenitor B cells with the v-Abl oncogene of Abelson murine leukemia virus results in cell cycle progression, rapid proliferation, and potentially malignant transformation while preventing any further differentiation. Progenitor B cells transformed with the temperature-sensitive form of the v-Abl oncogene have served as a model to study cellular response to Imatinib treatment. After some manipulation, very few cells were forced to progress to malignancy, forming tumor in vivo. These cells were no long sensitive to v-Abl inactivation, resembling the Imatinib resistant ALL. Autophagy is the process by which proteins and organelles are broken-down and recycled within the eukaryotic cell and has been hypothesized to play a part in cancer cell survival and drug-resistance. LC3 processing is a widely accepted marker of autophagy induction and progression. It has also been shown that Imatinib treatment of Ph+ leukemia can induce autophagy. In this study, we examined the autophagy induction in response to v-Abl inactivation in a Ph+-B-ALL cell model that shows resistance to Imatinib. In particular, we wonder whether the tumor cell line resistant to v-Abl inactivation may acquire a high level of autophagy to become resistant to apoptosis induced by v-Abl inactivation, and thus become addicted to autophagy. Indeed, this tumor cell line displays a high basal levels of LC3 I and II expression, regardless of v-Abl activity. We further demonstrated that inhibition of the autophagy pathway enhances the tumor line's sensitivity to Imatinib, resulting in cell cycle arrest and massive apoptosis. The combination of autophagy and Abl inhibitions may serve as an effective therapy for BCR-Abl positive CML.
ContributorsArkus, Nohea (Author) / Chang, Yung (Thesis advisor) / Kusumi, Kenro (Committee member) / Lake, Douglas (Committee member) / Jacobs, Bertram (Committee member) / Arizona State University (Publisher)
Created2011
158400-Thumbnail Image.png
Description
Necroptosis is a pro-inflammatory mechanism of programmed cell death. It has been implicated in many diseases such as inflammatory diseases, neurodegenerative diseases, cancer and during viral infections. The focus of this research work was to establish the relationship between poxvirus pathogenesis and necroptosis, and the translation implications of necroptosis in

Necroptosis is a pro-inflammatory mechanism of programmed cell death. It has been implicated in many diseases such as inflammatory diseases, neurodegenerative diseases, cancer and during viral infections. The focus of this research work was to establish the relationship between poxvirus pathogenesis and necroptosis, and the translation implications of necroptosis in oncolytic virotherapy. Vaccinia virus (VACV) is the currently used vaccine for smallpox and it has also been developed as a vaccine vector for several pathogens. E3L is one of the key innate immune evasion genes of VACV and it encodes E3 protein composed of dsRNA binding domain in the C-terminus and Z-NA-binding domain (Z-NA BD) in the N terminus. Both domains are necessary for type 1 interferon resistance and pathogenesis. Recently, it has been shown that in in vitro, the N-terminus of E3 is necessary to inhibit necroptosis occurring through the host-encoded cellular proteins RIP3 and Z-NA-binding protein DAI interaction leading to phosphorylation of MLKL, the key executioner step in the pathway. The research work presented here clearly demonstrates that in a mouse model, the N-terminus of VACV E3 is necessary to inhibit necroptosis during pathogenesis in mice. Another poxvirus belonging to the same family as VACV is monkeypox virus (MPXV) and is an emerging human pathogen. MPXV contains a natural truncation in the N-terminus of its E3 homologue, F3. The results indicate that during MPXV infection in mice, pathogenesis was higher only in DAI knockout mice and not in MLKL knockout mice, suggesting that DAI is possibly activating other proteins not leading to necroptosis. The characterization of VACV as an oncolytic virus was carried out with a focus on future clinical trials. In this study, a pan screening was conducted in various cancer cell lines as many cancers downregulate necroptotic proteins. The results reveal that the N-terminal deletion mutant of VACV selectively replicates in cancer cell lines with a deficient necroptotic pathway and thus, can be used as a potential treatment against specific tumors and evidently, provides abundant scope for future studies.
ContributorsSubramanian, Sambhavi (Author) / Jacobs, Bertram (Thesis advisor) / Newbern, Jason (Thesis advisor) / Blattman, Joseph (Committee member) / Gustin, Kurt (Committee member) / Arizona State University (Publisher)
Created2020