Matching Items (3)
Filtering by

Clear all filters

157057-Thumbnail Image.png
Description
The pervasive use of social media gives it a crucial role in helping the public perceive reliable information. Meanwhile, the openness and timeliness of social networking sites also allow for the rapid creation and dissemination of misinformation. It becomes increasingly difficult for online users to find accurate and trustworthy information.

The pervasive use of social media gives it a crucial role in helping the public perceive reliable information. Meanwhile, the openness and timeliness of social networking sites also allow for the rapid creation and dissemination of misinformation. It becomes increasingly difficult for online users to find accurate and trustworthy information. As witnessed in recent incidents of misinformation, it escalates quickly and can impact social media users with undesirable consequences and wreak havoc instantaneously. Different from some existing research in psychology and social sciences about misinformation, social media platforms pose unprecedented challenges for misinformation detection. First, intentional spreaders of misinformation will actively disguise themselves. Second, content of misinformation may be manipulated to avoid being detected, while abundant contextual information may play a vital role in detecting it. Third, not only accuracy, earliness of a detection method is also important in containing misinformation from being viral. Fourth, social media platforms have been used as a fundamental data source for various disciplines, and these research may have been conducted in the presence of misinformation. To tackle the challenges, we focus on developing machine learning algorithms that are robust to adversarial manipulation and data scarcity.

The main objective of this dissertation is to provide a systematic study of misinformation detection in social media. To tackle the challenges of adversarial attacks, I propose adaptive detection algorithms to deal with the active manipulations of misinformation spreaders via content and networks. To facilitate content-based approaches, I analyze the contextual data of misinformation and propose to incorporate the specific contextual patterns of misinformation into a principled detection framework. Considering its rapidly growing nature, I study how misinformation can be detected at an early stage. In particular, I focus on the challenge of data scarcity and propose a novel framework to enable historical data to be utilized for emerging incidents that are seemingly irrelevant. With misinformation being viral, applications that rely on social media data face the challenge of corrupted data. To this end, I present robust statistical relational learning and personalization algorithms to minimize the negative effect of misinformation.
ContributorsWu, Liang (Author) / Liu, Huan (Thesis advisor) / Tong, Hanghang (Committee member) / Doupe, Adam (Committee member) / Davison, Brian D. (Committee member) / Arizona State University (Publisher)
Created2019
161479-Thumbnail Image.png
Description
Tensors are commonly used for representing multi-dimensional data, such as Web graphs, sensor streams, and social networks. As a consequence of the increase in the use of tensors, tensor decomposition operations began to form the basis for many data analysis and knowledge discovery tasks, from clustering, trend detection, anomaly detection

Tensors are commonly used for representing multi-dimensional data, such as Web graphs, sensor streams, and social networks. As a consequence of the increase in the use of tensors, tensor decomposition operations began to form the basis for many data analysis and knowledge discovery tasks, from clustering, trend detection, anomaly detection to correlationanalysis [31, 38]. It is well known that Singular Value matrix Decomposition (SVD) [9] is used to extract latent semantics for matrix data. When apply SVD to tensors, which have more than two modes, it is tensor decomposition. The two most popular tensor decomposition algorithms are the Tucker [54] and the CP [19] decompositions. Intuitively, they both generalize SVD to tensors. However, one key problem with tensor decomposition is its computational complexity which may cause system bottleneck. Therefore, two phase block-centric CP tensor decomposition (2PCP) was proposed to partition the tensor into small sub-tensors, execute sub-tensor decomposition in parallel and combine the factors from each sub-tensor into final decomposition factors through iterative rerefinement process. Consequently, I proposed Sub-tensor Impact Graph (SIG) to account for inaccuracy propagation among sub-tensors and measure the impact of decomposition of sub-tensors on the other's decomposition, Based on SIG, I proposed several optimization strategies to optimize 2PCP's phase-2 refinement process. Furthermore, I applied SIG and optimization strategies for data focus, data evolution, and focus shifting in tensor analysis. Personalized Tensor Decomposition (PTD) is proposed to account for the users focus given the observations that in many applications, the user may have a focus of interest i.e., part of the data for which the user needs high accuracy and beyond this area focus, accuracy may not be as critical. PTD takes as input one or more areas of focus and performs the decomposition in such a way that, when reconstructed, the accuracy of the tensor is boosted for these areas of focus. A related challenge of data evolution in tensor analytics is incremental tensor decomposition since re-computation of the whole tensor decomposition with each update will cause high computational costs and incur large memory overheads. Especially for applications where data evolves over time and the tensor-based analysis results need to be continuouslymaintained. To avoid re-decomposition, I propose a two-phase block-incremental CP-based tensor decomposition technique, BICP, that efficiently and effectively maintains tensor decomposition results in the presence of dynamically evolving tensor data. I further extend the research focus on user focus shift. User focus may change over time as data is evolving along the time. Although PTD is efficient, re-computation for each user preference update can be the bottleneck for the system. Therefore I propose dynamic evolving user focus tensor decomposition which can smartly reuse the existing decomposition result to improve the efficiency of evolving user focus block decomposition.
ContributorsHuang, shengyu (Author) / Candan, K. Selcuk (Thesis advisor) / Davulcu, Hasan (Committee member) / Sapino, Maria Luisa (Committee member) / Tong, Hanghang (Committee member) / Zou, Jia (Committee member) / Arizona State University (Publisher)
Created2021
161232-Thumbnail Image.png
Description
Many real-world problems, such as model- and data-driven computer simulation analysis, social and collaborative network analysis, brain data analysis, and so on, benefit from jointly modeling and analyzing the underlying patterns associated with complex, multi-relational data. Tensor decomposition is an ideal mathematical tool for this joint modeling, due to its

Many real-world problems, such as model- and data-driven computer simulation analysis, social and collaborative network analysis, brain data analysis, and so on, benefit from jointly modeling and analyzing the underlying patterns associated with complex, multi-relational data. Tensor decomposition is an ideal mathematical tool for this joint modeling, due to its simultaneous analysis of such multi-relational data, which is made possible by the data's multidimensional, array-based nature. A major challenge in tensor decomposition lies with its computational and space complexity, especially for dense datasets. While the process is comparatively faster for sparse tensors, decomposition is still a major bottleneck for many applications. The tensor decomposition process results in dense (hence, large) intermediate results, even when the input tensor is sparse (or small). Noise is another challenge for most data mining techniques, and many tensor decomposition schemes are sensitive to noisy datasets; this is an inevitable problem for real-world data, which can lead to false conclusions. In this dissertation, I develop innovative tensor decomposition algorithms for mining both sparse and dense multi-relational data in a noise-resistant way. I present novel, scalable, parallelizable tensor decomposition algorithms, specifically tuned to be effective for dense, noisy tensors, and which maintain the quality of the resulting analysis. Furthermore, I present results on multi-relational data applications focusing on model- and data-driven computer simulation analysis, as well as social network and web mining, which demonstrate the effectiveness of these tensor decompositions.
ContributorsLi, Xinsheng (Author) / Candan, Kasim S (Thesis advisor) / Davulcu, Hasan (Committee member) / Sapino, Maria L (Committee member) / Tong, Hanghang (Committee member) / Arizona State University (Publisher)
Created2019