Matching Items (13)
Filtering by

Clear all filters

152445-Thumbnail Image.png
Description
Glioblastoma (GBM) is the most common primary brain tumor with an incidence of approximately 11,000 Americans. Despite decades of research, average survival for GBM patients is a modest 15 months. Increasing the extent of GBM resection increases patient survival. However, extending neurosurgical margins also threatens the removal of eloquent brain.

Glioblastoma (GBM) is the most common primary brain tumor with an incidence of approximately 11,000 Americans. Despite decades of research, average survival for GBM patients is a modest 15 months. Increasing the extent of GBM resection increases patient survival. However, extending neurosurgical margins also threatens the removal of eloquent brain. For this reason, the infiltrative nature of GBM is an obstacle to its complete resection. We hypothesize that targeting genes and proteins that regulate GBM motility, and developing techniques that safely enhance extent of surgical resection, will improve GBM patient survival by decreasing infiltration into eloquent brain regions and enhancing tumor cytoreduction during surgery. Chapter 2 of this dissertation describes a gene and protein we identified; aquaporin-1 (aqp1) that enhances infiltration of GBM. In chapter 3, we describe a method for enhancing the diagnostic yield of GBM patient biopsies which will assist in identifying future molecular targets for GBM therapies. In chapter 4 we develop an intraoperative optical imaging technique that will assist identifying GBM and its infiltrative margins during surgical resection. The topic of this dissertation aims to target glioblastoma infiltration from molecular and cellular biology and neurosurgical disciplines. In the introduction we; 1. Provide a background of GBM and current therapies. 2. Discuss a protein we found that decreases GBM survival. 3. Describe an imaging modality we utilized for improving the quality of accrued patient GBM samples. 4. We provide an overview of intraoperative contrast agents available for neurosurgical resection of GBM, and discuss a new agent we studied for intraoperative visualization of GBM.
ContributorsGeorges, Joseph F (Author) / Feuerstein, Burt G (Thesis advisor) / Smith, Brian H. (Thesis advisor) / Van Keuren-Jensen, Kendall (Committee member) / Deviche, Pierre (Committee member) / Bennett, Kevin (Committee member) / Arizona State University (Publisher)
Created2014
152705-Thumbnail Image.png
Description
Cells live in complex environments and must be able to adapt to environmental changes in order to survive. The ability of a cell to survive and thrive in a changing environment depends largely on its ability to receive and respond to extracellular signals. Initiating with receptors, signal transduction cascades begin

Cells live in complex environments and must be able to adapt to environmental changes in order to survive. The ability of a cell to survive and thrive in a changing environment depends largely on its ability to receive and respond to extracellular signals. Initiating with receptors, signal transduction cascades begin translating extracellular signals into intracellular messages. Such signaling cascades are responsible for the regulation of cellular metabolism, cell growth, cell movement, transcription, translation, proliferation and differentiation. This dissertation seeks to dissect and examine critical signaling pathways involved in the regulation of proliferation in neural stem cells (Chapter 2) and the regulation of Glioblastoma Multiforme pathogenesis (GBM; Chapter 3). In Chapter 2 of this dissertation, we hypothesize that the mTOR signaling pathway plays a significant role in the determination of neural stem cell proliferation given its control of cell growth, metabolism and survival. We describe the effect of inhibition of mTOR signaling on neural stem cell proliferation using animal models of aging. Our results show that the molecular method of targeted inhibition may result in differential effects on neural stem cell proliferation as the use of rapamycin significantly reduced proliferation while the use of metformin did not. Abnormal signaling cascades resulting in unrestricted proliferation may lead to the development of brain cancer, such as GBM. In Chapter 3 of this dissertation, we hypothesize that the inhibition of the protein kinase, aPKCλ results in halted GBM progression (invasion and proliferation) due to its central location in multiple signaling cascades. Using in-vitro and in-vivo models, we show that aPKCλ functions as a critical node in GBM signaling as both cell-autonomous and non-cell-autonomous signaling converge on aPKCλ resulting in pathogenic downstream effects. This dissertation aims to uncover the molecular mechanisms involved in cell signaling pathways which are responsible for critical cellular effects such as proliferation, invasion and transcriptional regulation.
ContributorsKusne, Yael (Author) / Sanai, Nader (Thesis advisor) / Neisewander, Janet (Thesis advisor) / Tran, Nhan (Committee member) / Hammer, Ronald (Committee member) / Narayanan, Vinodh (Committee member) / Shapiro, Joan (Committee member) / Arizona State University (Publisher)
Created2014
156746-Thumbnail Image.png
Description
Achieving effective drug concentrations within the central nervous system (CNS) remains one of the greatest challenges for the treatment of brain tumors. The presence of the blood-brain barrier and blood-spinal cord barrier severely restricts the blood-to-CNS entry of nearly all systemically administered therapeutics, often leading to the development of peripheral

Achieving effective drug concentrations within the central nervous system (CNS) remains one of the greatest challenges for the treatment of brain tumors. The presence of the blood-brain barrier and blood-spinal cord barrier severely restricts the blood-to-CNS entry of nearly all systemically administered therapeutics, often leading to the development of peripheral toxicities before a treatment benefit is observed. To circumvent systemic barriers, intrathecal (IT) injection of therapeutics directly into the cerebrospinal fluid (CSF) surrounding the brain and spinal cord has been used as an alternative administration route; however, its widespread translation to the clinic has been hindered by poor drug pharmacokinetics (PK), including rapid clearance, inadequate distribution, as well as toxicity. One strategy to overcome the limitations of free drug PK and improve drug efficacy is to encapsulate drug within nanoparticles (NP), which solubilize hydrophobic molecules for sustained release in physiological environments. In this thesis, we will develop NP delivery strategies for brain tumor therapy in two model systems: glioblastoma (GBM), the most common and deadly malignant primary brain tumor, and medulloblastoma, the most common pediatric brain tumor. In the first research chapter, we developed 120 nm poly(lactic acid-co-glycolic acid) NPs encapsulating the chemotherapy, camptothecin, for intravenous delivery to GBM. NP encapsulation of camptothecin was shown to reduce the drug’s toxicity and enable effective delivery to orthotopic GBM. To build off the success of intravenous NP, the second research chapter explored the utility of 100 nm PEGylated NPs for use with IT administration. Using in vivo imaging and ex vivo tissue slices, we found the NPs were rapidly transported by the convective forces of the CSF along the entire neuraxis and were retained for over 3 weeks. Based on their wide spread delivery and prolonged circulation, we examine the ability of the NPs to localize with tumor lesions in a leptomeningeal metastasis (LM) model of medulloblastoma. NPs administered to LM bearing mice were shown to penetrate into LM mets seeded within the meninges around the brain. These data show the potential to translate our success with intravenous NPs for GBM to improve IT chemotherapy delivery to LM.
ContributorsHouseholder, Kyle Thomas (Author) / Sirianni, Rachael W. (Thesis advisor) / Stabenfeldt, Sarah (Committee member) / Vernon, Brent (Committee member) / Caplan, Michael (Committee member) / Wechsler-Reya, Robert (Committee member) / Arizona State University (Publisher)
Created2018
137083-Thumbnail Image.png
Description
A coincidence reporter construct, consisting of the p21-promoter and two luciferase genes (Firefly and Renilla), was constructed for the screening of drugs that might inhibit Olig2's tumorigenic role in glioblastoma. The reporter construct was tested using an Olig2 inhibitor, HSP990, as well as short hairpin RNA targeting Olig2. Further confirmatory

A coincidence reporter construct, consisting of the p21-promoter and two luciferase genes (Firefly and Renilla), was constructed for the screening of drugs that might inhibit Olig2's tumorigenic role in glioblastoma. The reporter construct was tested using an Olig2 inhibitor, HSP990, as well as short hairpin RNA targeting Olig2. Further confirmatory analysis is needed before the reporter cell line is ready for high-throughput screening at the NIH and lead compound selection.
ContributorsCusimano, Joseph Michael (Author) / LaBaer, Joshua (Thesis director) / Mangone, Marco (Committee member) / Mehta, Shwetal (Committee member) / Barrett, The Honors College (Contributor) / Department of Chemistry and Biochemistry (Contributor)
Created2014-05
134436-Thumbnail Image.png
Description
Glioblastoma is the most aggressive and lethal brain tumor, due to its resistance to current conventional therapy. The resistance to chemo- and radiotherapy has been attributed to a special population of cells known as glioma stem cells. Previous literature has shown the importance of a Central Nervous System-restricted transcription factor

Glioblastoma is the most aggressive and lethal brain tumor, due to its resistance to current conventional therapy. The resistance to chemo- and radiotherapy has been attributed to a special population of cells known as glioma stem cells. Previous literature has shown the importance of a Central Nervous System-restricted transcription factor OLIG2 in maintaining the tumor-propagating potential of these glioma stem cells. OLIG2's function was further elucidated, with its pro-mitogenic function due to its ability to negatively regulate the p53 pathway by suppressing the acetylation of the p53 protein's C terminal domain. Past work in our lab has confirmed that one of OLIG2's partner proteins is Histone Deacetylase 1 (HDAC1). In vitro experiments have also shown that targeting HDAC1 using hairpin RNA in glioma stem cells negatively impacts proliferation. In a survival study using a murine glioma model, targeting Hdac1 using hairpin RNA is shown to reduce tumor burden and increase survival. In this paper, we demonstrate that silencing Hdac1 expression reduces proliferation, increases cell death, likely a result of increased acetylation of p53. Olig2 expression levels seem to be unaffected in GSCs, demonstrating that the Hdac1 protein ablation is indeed lethal to GSCs. This work builds upon previously collected results, confirming that Hdac1 is a potential surrogate target for Olig2's pro-mitotic function in regulating the p53 pathway.
ContributorsLoo, Vincent You Wei (Author) / LaBaer, Joshua (Thesis director) / Mehta, Shwetal (Committee member) / School of Molecular Sciences (Contributor) / Barrett, The Honors College (Contributor)
Created2017-05
135769-Thumbnail Image.png
Description
Glioblastoma (GBM) is an extremely malignant form of brain cancer characterized by rapid progression and poor patient survival. Even after standard of care treatments, less than ten percent of patients with this disease survive five years. More effective therapeutic options are urgently needed to improve outcomes for patients with GBM.

Glioblastoma (GBM) is an extremely malignant form of brain cancer characterized by rapid progression and poor patient survival. Even after standard of care treatments, less than ten percent of patients with this disease survive five years. More effective therapeutic options are urgently needed to improve outcomes for patients with GBM. Adequate drug delivery is a critical challenge in GBM treatment, as drugs delivered systemically must be able to penetrate the blood brain barrier (BBB) and reach the tumor at therapeutic levels. To address this, we developed a resource to catalog BBB penetration information for investigational agents currently in clinical trials in cancer. Using an in silico prediction model and manual annotation to capture existing knowledge from the published literature, BBB content for ~500 investigational drugs was added to the investigational database tool. In addition to BBB content, the database also includes information on the gene targets of the included therapies. The investigational database tool was used to identify investigational agents that (1) may have increased activity against GBM based on the presence of a specific mutation in the tumor sample and (2) have evidence suggesting the compounds may penetrate the BBB. By prioritizing investigational agents for further study based on evidence for BBB penetration, this resource can help the GBM research community pursue more effective treatments for GBM.
ContributorsHerring, Emily Lora (Author) / Coursen, Jerry (Thesis director) / Byron, Sara (Committee member) / Biomedical Informatics Program (Contributor) / Harrington Bioengineering Program (Contributor) / Barrett, The Honors College (Contributor)
Created2016-05
168508-Thumbnail Image.png
Description
The growing field of immunotherapy has generated numerous promising diseasetreatment platforms in recent years. By utilizing the innate capabilities of the immune system, these treatments have provided a unique, simplistic approach to targeting and eliminating cancer. Among these, the bispecific T cell engager (BiTEÒ) model has demonstrated potential as a

The growing field of immunotherapy has generated numerous promising diseasetreatment platforms in recent years. By utilizing the innate capabilities of the immune system, these treatments have provided a unique, simplistic approach to targeting and eliminating cancer. Among these, the bispecific T cell engager (BiTEÒ) model has demonstrated potential as a treatment capable of bringing immune cells into contact with cancer cells of interest and initiating perforin/granzyme-mediated cell death of the tumor. While standard BiTE platforms rely on targeting a tumor-specific receptor via its complementary antibody, no such universal receptor has been reported for glioblastoma (GBM), the most common and aggressive primary brain tumor which boasts a median survival of only 15 months. In addition to its dismal prognosis, GBM deploys several immune-evasion tactics that further complicate treatment and make targeted therapy difficult. However, it has been reported that chlorotoxin, a 36-amino acid peptide found in the venom of Leiurus quinquestriatus, binds specifically to glioma cells while not binding healthy tissue in humans. This specificity positions chlorotoxin as a prime candidate to act as a GBM-targeting moiety as one half of an immunotherapeutic treatment platform resembling the BiTE design which I describe here. Named ACDClx∆15, this fusion protein tethers a truncated chlorotoxin molecule to the variable region of a monoclonal antibody targeted to CD3ε on both CD8+ and CD4+ T cells and is theorized to bring T cells into contact with GBM in order to stimulate an artificial immune response against the tumor. Here I describe the design and production of ACDClx∆15 and test its ability to bind and activate T lymphocytes against murine GBM in vitro. ACDClx∆15 was shown to bind both GBM and T cells without binding healthy cells in vitro but did not demonstrate the ability to activate T cells in the presence of GBM.
ContributorsSchaefer, Braeden Scott (Author) / Mor, Tsafrir (Thesis advisor) / Mason, Hugh (Committee member) / Blattman, Joseph (Committee member) / Arizona State University (Publisher)
Created2021
Description

Redox homeostasis is described as the net physiologic balance between inter-convertible oxidized and reduced equivalents within subcellular compartments that remain in a dynamic equilibrium. This equilibrium is impacted by reactive oxygen species (ROS), which are natural by-products of normal cellular activity. Studies have shown that cancer cells have high ROS

Redox homeostasis is described as the net physiologic balance between inter-convertible oxidized and reduced equivalents within subcellular compartments that remain in a dynamic equilibrium. This equilibrium is impacted by reactive oxygen species (ROS), which are natural by-products of normal cellular activity. Studies have shown that cancer cells have high ROS levels and altered redox homeostasis due to increased basal metabolic activity, mitochondrial dysfunction, peroxisome activity, as well as the enhanced activity of NADPH oxidase, cyclooxygenases, and lipoxygenases. Glioblastoma (GBM) is the most prevalent primary brain tumor in adults with a median survival of 15 months. GBM is characterized by its extreme resistance to therapeutic interventions as well as an elevated metabolic rate that results in the exacerbated production of ROS. Therefore, many agents with either antioxidant or pro-oxidant mechanisms of action have been rigorously employed in preclinical as well as clinical settings for treating GBM by inducing oxidative stress within the tumor. Among those agents are well-known antioxidant vitamin C and small molecular weight SOD mimic BMX-001, both of which are presently in clinical trials on GBM patients. Despite the wealth of investigations, limited data is available on the response of normal brain vs glioblastoma tissue to these therapeutic interventions. Currently, a sensitive and rapid liquid chromatography tandem mass spectrometry (LC-MS/MS) method was established for the quantification of a panel of oxidative stress biomarkers: glutathione (GSH), cysteine (Cys), glutathione disulfide (GSSG), and cysteine disulfide in human-derived brain tumor and mouse brain samples; this method will be enriched with additional oxidative stress biomarkers homocysteine (Hcy), methionine (Met), and cystathionine (Cyst). Using this enriched method, we propose to evaluate the thiol homeostasis and the redox state of both normal brain and GBM in mice after exposure with redox-active therapeutics. Our results showed that, compared to normal brain (in intact mice), GBM tissue has significantly lower GSH/GSSG and Cys/CySS ratios indicating much higher oxidative stress levels. Contralateral “normal” brain tissue collected from the mice with intracranial GBM were also under significant oxidative stress compared to normal brains collected from the intact mice. Importantly, normal brain tissue in both studies retained the ability to restore redox homeostasis after treatment with a redox-active therapeutic within 24 hours while glioblastoma tissue does not. Ultimately, elucidating the differential redox response of normal vs tumor tissue will allow for the development of more redox-active agents with therapeutic benefit.

ContributorsShaik, Kamal (Author) / LaBaer, Joshua (Thesis director) / Tovmasyan, Artak (Committee member) / Barrett, The Honors College (Contributor) / School of Life Sciences (Contributor) / Historical, Philosophical & Religious Studies, Sch (Contributor) / Dean, W.P. Carey School of Business (Contributor)
Created2022-12
157564-Thumbnail Image.png
Description
Semi-supervised learning (SSL) is sub-field of statistical machine learning that is useful for problems that involve having only a few labeled instances with predictor (X) and target (Y) information, and abundance of unlabeled instances that only have predictor (X) information. SSL harnesses the target information available in the limited

Semi-supervised learning (SSL) is sub-field of statistical machine learning that is useful for problems that involve having only a few labeled instances with predictor (X) and target (Y) information, and abundance of unlabeled instances that only have predictor (X) information. SSL harnesses the target information available in the limited labeled data, as well as the information in the abundant unlabeled data to build strong predictive models. However, not all the included information is useful. For example, some features may correspond to noise and including them will hurt the predictive model performance. Additionally, some instances may not be as relevant to model building and their inclusion will increase training time and potentially hurt the model performance. The objective of this research is to develop novel SSL models to balance data inclusivity and usability. My dissertation research focuses on applications of SSL in healthcare, driven by problems in brain cancer radiomics, migraine imaging, and Parkinson’s Disease telemonitoring.

The first topic introduces an integration of machine learning (ML) and a mechanistic model (PI) to develop an SSL model applied to predicting cell density of glioblastoma brain cancer using multi-parametric medical images. The proposed ML-PI hybrid model integrates imaging information from unbiopsied regions of the brain as well as underlying biological knowledge from the mechanistic model to predict spatial tumor density in the brain.

The second topic develops a multi-modality imaging-based diagnostic decision support system (MMI-DDS). MMI-DDS consists of modality-wise principal components analysis to incorporate imaging features at different aggregation levels (e.g., voxel-wise, connectivity-based, etc.), a constrained particle swarm optimization (cPSO) feature selection algorithm, and a clinical utility engine that utilizes inverse operators on chosen principal components for white-box classification models.

The final topic develops a new SSL regression model with integrated feature and instance selection called s2SSL (with “s2” referring to selection in two different ways: feature and instance). s2SSL integrates cPSO feature selection and graph-based instance selection to simultaneously choose the optimal features and instances and build accurate models for continuous prediction. s2SSL was applied to smartphone-based telemonitoring of Parkinson’s Disease patients.
ContributorsGaw, Nathan (Author) / Li, Jing (Thesis advisor) / Wu, Teresa (Committee member) / Yan, Hao (Committee member) / Hu, Leland (Committee member) / Arizona State University (Publisher)
Created2019
Description
Glioblastoma Multiforme (GBM) is a grade IV astrocytoma and the most aggressive form of cancer that begins within the brain. The two-year average survival rate of GBM in the United States of America is 25%, and it has a higher incidence in individuals within the ages of 45 - 60

Glioblastoma Multiforme (GBM) is a grade IV astrocytoma and the most aggressive form of cancer that begins within the brain. The two-year average survival rate of GBM in the United States of America is 25%, and it has a higher incidence in individuals within the ages of 45 - 60 years. GBM Tumor formation can either begin as normal brain cells or develop from an existing low-grade astrocytoma and are housed by the perivascular niche in the brain microenvironment. This niche allows for the persistence of a population of cells known as glioma stem cells (GSC) by supplying optimum growth conditions that build chemoresistance and cause recurrence of the tumor within two to five years of treatment. It has therefore become imperative to understand the role of the perivascular niche on GSCs through in vitro modelling in order to improve the efficiency of therapeutic treatment and increase the survival rate of patients with GBM.

In this study, a unique three dimensional (3D) microfluidic platform that permitted the study of intercellular interactions between three different cell types in the perivascular niche of the brain was developed and utilized for the first time. Specifically, human endothelial cells were embedded in a fibrin matrix and introduced into the vascular layer of the microfluidic platform.

After spontaneous formation of a vascular layer, Normal Human Astrocytes and Patient derived GSC were embedded in a Matrigel® matrix and incorporated in the stroma and tumor regions of the microfluidic device respectively.

Using the established platform, migration, proliferation and stemness of GSCs studies were conducted. The findings obtained indicate that astrocytes in the perivascular niche significantly increase the migratory and proliferative properties of GSCs in the tumor microenvironment, consistent with previous in vivo findings.

The novel GBM tumor microenvironment developed herein, could be utilized for further

in-depth cellular and molecular level studies to dissect the influence of individual factors within the tumor niche on GSCs biology, and could serve as a model for developing targeted therapies.
ContributorsAdjei-Sowah, Emmanuella Akweley (Author) / Nikkhah, Mehdi (Thesis advisor) / Plaisier, Christopher (Committee member) / Mehta, Shwetal (Committee member) / Arizona State University (Publisher)
Created2020