Matching Items (7)
Filtering by

Clear all filters

173031-Thumbnail Image.png
Description

This thesis answers the following question: How does the history of cervical cancer show that prevention helps reduce rates of cancer-related deaths among women? By studying the history of cervical cancer, people can understand how a cancer that was once one of the top killers of women in the US

This thesis answers the following question: How does the history of cervical cancer show that prevention helps reduce rates of cancer-related deaths among women? By studying the history of cervical cancer, people can understand how a cancer that was once one of the top killers of women in the US has declined to become one of the lowest through the establishment of and effective communication of early prevention and diagnostics, both among the general public and within the medical community itself. This thesis is organized based on key episodes which were pertinent to the history of cervical cancer, primarily within the United States and Europe.

Created2021-03-22
173049-Thumbnail Image.png
Description

Michael R. Harrison worked as a pediatric surgeon in the US throughout the late-twentieth century and performed many fetal surgeries, including one of the first successful surgeries on a fetus in utero, or while it is still in its gestational carrier’s body, also called open fetal surgery. A fetus is

Michael R. Harrison worked as a pediatric surgeon in the US throughout the late-twentieth century and performed many fetal surgeries, including one of the first successful surgeries on a fetus in utero, or while it is still in its gestational carrier’s body, also called open fetal surgery. A fetus is an organism developing inside of the uterus that is anywhere from eight weeks old to birth. Harrison hypothesized that open fetal surgery could correct developmental defects that may become fatal to the fetus at birth. After years of research, Harrison and his colleagues at the University of California, San Francisco, in San Francisco, California, performed surgery on the fetus of a woman in her seventh month of pregnancy to correct the fetus’s developmental defects. The surgery was successful, as the fetus developed into a healthy child. Harrison’s work led to advancements in fetal treatment techniques, such as a method to conduct open fetal surgery that will not harm the fetus or pregnant woman, as well as the establishment of one of the first fetal treatment centers in the US.

Created2021-08-04
173056-Thumbnail Image.png
Description

In 2006, United States pharmaceutical company Merck released the Gardasil vaccination series, which protected recipients against four strains of Human Papillomaviruses, or HPV. HPV is a sexually transmitted infection which may be asymptomatic or cause symptoms such as genital warts, and is linked to cervical, vaginal, vulvar, anal, penile, head,

In 2006, United States pharmaceutical company Merck released the Gardasil vaccination series, which protected recipients against four strains of Human Papillomaviruses, or HPV. HPV is a sexually transmitted infection which may be asymptomatic or cause symptoms such as genital warts, and is linked to cervical, vaginal, vulvar, anal, penile, head, neck, and face cancers. In 2006, based on research conducted by researchers Ian Frazer and Jian Zhou in the 1990s, Merck released a four-strain version of Gardasil, which protected boys and girls aged nine and older against the major HPV strains HPV-6, HPV-11, HPV-16, and HPV-18. In 2014, Merck released Gardasil 9, a nine-strain version that protected from the original four HPV strains plus strains HPV-31, HPV-33, HPV-45, and HPV-58. Gardasil is a preventative measure and reduces the risk of contracting HPV and HPV-related cancers by up to ninety-seven percent.

Created2021-07-30
173058-Thumbnail Image.png
Description

On 20 August 2007, in Frazer v. Schlegel, the United States Court of Appeals for the Federal Circuit decided that researchers Ian Frazer and Jian Zhou owned the rights to the vaccine patent for Human Papillomavirus, or HPV, instead of a research team led by Richard Schlegel. Frazer v. Schlegel

On 20 August 2007, in Frazer v. Schlegel, the United States Court of Appeals for the Federal Circuit decided that researchers Ian Frazer and Jian Zhou owned the rights to the vaccine patent for Human Papillomavirus, or HPV, instead of a research team led by Richard Schlegel. Frazer v. Schlegel reversed the decision that the Board of Patent Appeals and Interferences had previously made, awarding the patent to Schlegel on the basis that Frazer’s patent application contained inaccurate science. However, once appealed, the Federal Circuit judges found Frazer’s science to be accurate, granting him rights to the vaccine patent. In 2006, the US Food and Drug Administration, or FDA, approved the first HPV vaccine, which has since been effective in protecting women from cervical cancer by up to ninety-seven percent if they were vaccinated before contracting HPV. The Circuit’s decision gave Frazer ownership of the patent for the HPV vaccine, which physicians have administered over 120 million doses of to people in the US.

Created2021-08-04
173062-Thumbnail Image.png
Description

From 1936 to 1945, the Women’s Field Army, hereafter the WFA, educated women in the US on the early symptoms, prevention, and treatment of reproductive cancers. The WFA was a women-led volunteer organization and a branch of, what was then called, the American Society for the Control of Cancer, or

From 1936 to 1945, the Women’s Field Army, hereafter the WFA, educated women in the US on the early symptoms, prevention, and treatment of reproductive cancers. The WFA was a women-led volunteer organization and a branch of, what was then called, the American Society for the Control of Cancer, or ASCC. The WFA, headquartered in New York City, New York, recruited hundreds of thousands of women volunteers across the country. They distributed pamphlets, showed movies, and participated in other grassroots efforts to foster an understanding of reproductive cancers, namely breast and cervical cancer, among other women. The Women’s Field Army aided in reducing the number of cancer-related deaths by spreading cancer prevention awareness and teaching women about their reproductive health and the early detection of cancer, which was one of the first widespread educational resources about reproductive cancers for women.

Created2021-07-31
173897-Thumbnail Image.png
Description

Henrietta Lacks, born Loretta Pleasant, had terminal cervical cancer in 1951, and was diagnosed at The Johns Hopkins University in Baltimore, Maryland, where researchers collected and stored her cancer cells. Those cells went on to become the first immortal human cell line, which the researchers named HeLa. An immortal cell

Henrietta Lacks, born Loretta Pleasant, had terminal cervical cancer in 1951, and was diagnosed at The Johns Hopkins University in Baltimore, Maryland, where researchers collected and stored her cancer cells. Those cells went on to become the first immortal human cell line, which the researchers named HeLa. An immortal cell line is an atypical cluster of cells that continuously multiply on their own outside of the organism from which they came, often due to a mutation. Lacks’s cancer cells enabled scientists to study human cells outside of the human body, though that was controversial since she did not voluntarily donate her cells for such research. Science writer Rebecca Skloot chronicled Lacks’s life in her book, The Immortal Life of Henrietta Lacks, which became a movie in 2017. Lacks’s HeLa cell line has contributed to numerous biomedical research advancements and discoveries and her story has prompted legal and ethical debates over the rights that an individual has to their genetic material and tissue.

Created2020-10-09
173753-Thumbnail Image.png
Description

The HeLa cell line was the first immortal human cell line that George Otto Gey, Margaret Gey, and Mary Kucibek first isolated from Henrietta Lacks and developed at The Johns Hopkins Hospital in Baltimore, Maryland, in 1951. An immortal human cell line is a cluster of cells that continuously multiply

The HeLa cell line was the first immortal human cell line that George Otto Gey, Margaret Gey, and Mary Kucibek first isolated from Henrietta Lacks and developed at The Johns Hopkins Hospital in Baltimore, Maryland, in 1951. An immortal human cell line is a cluster of cells that continuously multiply on their own outside of the human from which they originated. Scientists use immortal human cell lines in their research to investigate how cells function in humans. Though the HeLa cell line has contributed to many advancements in biomedical research since the twentieth century, its usage in medical research has been controversial because Lacks did not consent to having her cells used for such purposes. As of 2020, scientists continue to use the HeLa cell line for numerous scientific advancements, such as the development of vaccines and the identification of many underlying disease mechanisms.

Created2020-09-18